Rozwiąż względem x (complex solution)
x=\frac{-9\sqrt{3}i+9}{8}\approx 1,125-1,948557159i
x = -\frac{9}{4} = -2\frac{1}{4} = -2,25
x=\frac{9+9\sqrt{3}i}{8}\approx 1,125+1,948557159i
Rozwiąż względem x
x = -\frac{9}{4} = -2\frac{1}{4} = -2,25
Wykres
Udostępnij
Skopiowano do schowka
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 729, a q jest dzielnikiem współczynnika wiodącego 64. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=-\frac{9}{4}
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
16x^{2}-36x+81=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel 64x^{3}+729 przez 4\left(x+\frac{9}{4}\right)=4x+9, aby uzyskać 16x^{2}-36x+81. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 16 do a, -36 do b i 81 do c w formule kwadratowej.
x=\frac{36±\sqrt{-3888}}{32}
Wykonaj obliczenia.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Umożliwia rozwiązanie równania 16x^{2}-36x+81=0, gdy ± jest Plus i gdy ± jest pomniejszona.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Wyświetl listę wszystkich znalezionych rozwiązań.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 729, a q jest dzielnikiem współczynnika wiodącego 64. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=-\frac{9}{4}
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
16x^{2}-36x+81=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel 64x^{3}+729 przez 4\left(x+\frac{9}{4}\right)=4x+9, aby uzyskać 16x^{2}-36x+81. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 16 do a, -36 do b i 81 do c w formule kwadratowej.
x=\frac{36±\sqrt{-3888}}{32}
Wykonaj obliczenia.
x\in \emptyset
Pierwiastek kwadratowy liczby ujemnej nie jest zdefiniowany w ciele liczb rzeczywistych, dlatego nie ma rozwiązań.
x=-\frac{9}{4}
Wyświetl listę wszystkich znalezionych rozwiązań.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}