Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-7 ab=6\left(-3\right)=-18
Rozłóż wyrażenie na czynniki przez grupowanie. Najpierw należy zapisać ponownie wyrażenie jako 6x^{2}+ax+bx-3. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-18 2,-9 3,-6
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -18.
1-18=-17 2-9=-7 3-6=-3
Oblicz sumę dla każdej pary.
a=-9 b=2
Rozwiązanie to para, która daje sumę -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
Przepisz 6x^{2}-7x-3 jako \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
Wyłącz przed nawias 3x w 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
Wyłącz przed nawias wspólny czynnik 2x-3, używając właściwości rozdzielności.
6x^{2}-7x-3=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Podnieś do kwadratu -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Pomnóż -4 przez 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Pomnóż -24 przez -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Dodaj 49 do 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Oblicz pierwiastek kwadratowy wartości 121.
x=\frac{7±11}{2\times 6}
Liczba przeciwna do -7 to 7.
x=\frac{7±11}{12}
Pomnóż 2 przez 6.
x=\frac{18}{12}
Teraz rozwiąż równanie x=\frac{7±11}{12} dla operatora ± będącego plusem. Dodaj 7 do 11.
x=\frac{3}{2}
Zredukuj ułamek \frac{18}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 6.
x=-\frac{4}{12}
Teraz rozwiąż równanie x=\frac{7±11}{12} dla operatora ± będącego minusem. Odejmij 11 od 7.
x=-\frac{1}{3}
Zredukuj ułamek \frac{-4}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{1}{3}\right)\right)
Rozłóż oryginalne wyrażenie na czynniki przy użyciu wyrażenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Podstaw \frac{3}{2} za x_{1} i -\frac{1}{3} za x_{2}.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\left(x+\frac{1}{3}\right)
Odejmij x od \frac{3}{2}, znajdując wspólny mianownik i odejmując liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\times \frac{3x+1}{3}
Dodaj \frac{1}{3} do x, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{2\times 3}
Pomnóż \frac{2x-3}{2} przez \frac{3x+1}{3}, mnożąc oba liczniki i oba mianowniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{6}
Pomnóż 2 przez 3.
6x^{2}-7x-3=\left(2x-3\right)\left(3x+1\right)
Skróć największy wspólny dzielnik 6 w 6 i 6.