Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-5 ab=6\left(-6\right)=-36
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako 6x^{2}+ax+bx-6. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-36 2,-18 3,-12 4,-9 6,-6
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Oblicz sumę dla każdej pary.
a=-9 b=4
Rozwiązanie to para, która daje sumę -5.
\left(6x^{2}-9x\right)+\left(4x-6\right)
Przepisz 6x^{2}-5x-6 jako \left(6x^{2}-9x\right)+\left(4x-6\right).
3x\left(2x-3\right)+2\left(2x-3\right)
3x w pierwszej i 2 w drugiej grupie.
\left(2x-3\right)\left(3x+2\right)
Wyłącz przed nawias wspólny czynnik 2x-3, używając właściwości rozdzielności.
6x^{2}-5x-6=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
Podnieś do kwadratu -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
Pomnóż -4 przez 6.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
Pomnóż -24 przez -6.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
Dodaj 25 do 144.
x=\frac{-\left(-5\right)±13}{2\times 6}
Oblicz pierwiastek kwadratowy wartości 169.
x=\frac{5±13}{2\times 6}
Liczba przeciwna do -5 to 5.
x=\frac{5±13}{12}
Pomnóż 2 przez 6.
x=\frac{18}{12}
Teraz rozwiąż równanie x=\frac{5±13}{12} dla operatora ± będącego plusem. Dodaj 5 do 13.
x=\frac{3}{2}
Zredukuj ułamek \frac{18}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 6.
x=-\frac{8}{12}
Teraz rozwiąż równanie x=\frac{5±13}{12} dla operatora ± będącego minusem. Odejmij 13 od 5.
x=-\frac{2}{3}
Zredukuj ułamek \frac{-8}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
6x^{2}-5x-6=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{2}{3}\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość \frac{3}{2} za x_{1}, a wartość -\frac{2}{3} za x_{2}.
6x^{2}-5x-6=6\left(x-\frac{3}{2}\right)\left(x+\frac{2}{3}\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.
6x^{2}-5x-6=6\times \frac{2x-3}{2}\left(x+\frac{2}{3}\right)
Odejmij x od \frac{3}{2}, znajdując wspólny mianownik i odejmując liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
6x^{2}-5x-6=6\times \frac{2x-3}{2}\times \frac{3x+2}{3}
Dodaj \frac{2}{3} do x, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
6x^{2}-5x-6=6\times \frac{\left(2x-3\right)\left(3x+2\right)}{2\times 3}
Pomnóż \frac{2x-3}{2} przez \frac{3x+2}{3}, mnożąc oba liczniki i oba mianowniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
6x^{2}-5x-6=6\times \frac{\left(2x-3\right)\left(3x+2\right)}{6}
Pomnóż 2 przez 3.
6x^{2}-5x-6=\left(2x-3\right)\left(3x+2\right)
Skróć największy wspólny dzielnik 6 w 6 i 6.