Rozłóż na czynniki
6\left(u-3\right)\left(u+4\right)
Oblicz
6\left(u-3\right)\left(u+4\right)
Udostępnij
Skopiowano do schowka
6\left(u^{2}+u-12\right)
Wyłącz przed nawias 6.
a+b=1 ab=1\left(-12\right)=-12
Rozważ u^{2}+u-12. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako u^{2}+au+bu-12. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,12 -2,6 -3,4
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -12.
-1+12=11 -2+6=4 -3+4=1
Oblicz sumę dla każdej pary.
a=-3 b=4
Rozwiązanie to para, która daje sumę 1.
\left(u^{2}-3u\right)+\left(4u-12\right)
Przepisz u^{2}+u-12 jako \left(u^{2}-3u\right)+\left(4u-12\right).
u\left(u-3\right)+4\left(u-3\right)
u w pierwszej i 4 w drugiej grupie.
\left(u-3\right)\left(u+4\right)
Wyłącz przed nawias wspólny czynnik u-3, używając właściwości rozdzielności.
6\left(u-3\right)\left(u+4\right)
Przepisz całe wyrażenie rozłożone na czynniki.
6u^{2}+6u-72=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
u=\frac{-6±\sqrt{6^{2}-4\times 6\left(-72\right)}}{2\times 6}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
u=\frac{-6±\sqrt{36-4\times 6\left(-72\right)}}{2\times 6}
Podnieś do kwadratu 6.
u=\frac{-6±\sqrt{36-24\left(-72\right)}}{2\times 6}
Pomnóż -4 przez 6.
u=\frac{-6±\sqrt{36+1728}}{2\times 6}
Pomnóż -24 przez -72.
u=\frac{-6±\sqrt{1764}}{2\times 6}
Dodaj 36 do 1728.
u=\frac{-6±42}{2\times 6}
Oblicz pierwiastek kwadratowy wartości 1764.
u=\frac{-6±42}{12}
Pomnóż 2 przez 6.
u=\frac{36}{12}
Teraz rozwiąż równanie u=\frac{-6±42}{12} dla operatora ± będącego plusem. Dodaj -6 do 42.
u=3
Podziel 36 przez 12.
u=-\frac{48}{12}
Teraz rozwiąż równanie u=\frac{-6±42}{12} dla operatora ± będącego minusem. Odejmij 42 od -6.
u=-4
Podziel -48 przez 12.
6u^{2}+6u-72=6\left(u-3\right)\left(u-\left(-4\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 3 za x_{1}, a wartość -4 za x_{2}.
6u^{2}+6u-72=6\left(u-3\right)\left(u+4\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}