Rozłóż na czynniki
6\left(u-\left(-\sqrt{10}-2\right)\right)\left(u-\left(\sqrt{10}-2\right)\right)
Oblicz
6\left(u^{2}+4u-6\right)
Udostępnij
Skopiowano do schowka
6u^{2}+24u-36=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
u=\frac{-24±\sqrt{24^{2}-4\times 6\left(-36\right)}}{2\times 6}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
u=\frac{-24±\sqrt{576-4\times 6\left(-36\right)}}{2\times 6}
Podnieś do kwadratu 24.
u=\frac{-24±\sqrt{576-24\left(-36\right)}}{2\times 6}
Pomnóż -4 przez 6.
u=\frac{-24±\sqrt{576+864}}{2\times 6}
Pomnóż -24 przez -36.
u=\frac{-24±\sqrt{1440}}{2\times 6}
Dodaj 576 do 864.
u=\frac{-24±12\sqrt{10}}{2\times 6}
Oblicz pierwiastek kwadratowy wartości 1440.
u=\frac{-24±12\sqrt{10}}{12}
Pomnóż 2 przez 6.
u=\frac{12\sqrt{10}-24}{12}
Teraz rozwiąż równanie u=\frac{-24±12\sqrt{10}}{12} dla operatora ± będącego plusem. Dodaj -24 do 12\sqrt{10}.
u=\sqrt{10}-2
Podziel -24+12\sqrt{10} przez 12.
u=\frac{-12\sqrt{10}-24}{12}
Teraz rozwiąż równanie u=\frac{-24±12\sqrt{10}}{12} dla operatora ± będącego minusem. Odejmij 12\sqrt{10} od -24.
u=-\sqrt{10}-2
Podziel -24-12\sqrt{10} przez 12.
6u^{2}+24u-36=6\left(u-\left(\sqrt{10}-2\right)\right)\left(u-\left(-\sqrt{10}-2\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość -2+\sqrt{10} za x_{1}, a wartość -2-\sqrt{10} za x_{2}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}