Rozłóż na czynniki
\left(3a-5x\right)\left(3x+2a\right)
Oblicz
\left(3a-5x\right)\left(3x+2a\right)
Wykres
Udostępnij
Skopiowano do schowka
6a^{2}-xa-15x^{2}
Rozważ wyrażenie 6a^{2}-ax-15x^{2} jako wielomian zmiennej a.
\left(3x+2a\right)\left(-5x+3a\right)
Znajdź jeden czynnik w postaci ka^{m}+n, gdzie ka^{m} jest dzielnikiem jednomianu o najwyższej potędze 6a^{2}, a n jest dzielnikiem czynnika stałego -15x^{2}. Takim czynnikiem jest 3x+2a. Umożliwia podział wielomianu na czynniki przez podzielenie go przez ten czynnik.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}