Rozwiąż względem x
x=\frac{\sqrt{6}-4}{5}\approx -0,310102051
x=\frac{-\sqrt{6}-4}{5}\approx -1,289897949
Wykres
Udostępnij
Skopiowano do schowka
5x^{2}+8x+2=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-8±\sqrt{8^{2}-4\times 5\times 2}}{2\times 5}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 5 do a, 8 do b i 2 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 5\times 2}}{2\times 5}
Podnieś do kwadratu 8.
x=\frac{-8±\sqrt{64-20\times 2}}{2\times 5}
Pomnóż -4 przez 5.
x=\frac{-8±\sqrt{64-40}}{2\times 5}
Pomnóż -20 przez 2.
x=\frac{-8±\sqrt{24}}{2\times 5}
Dodaj 64 do -40.
x=\frac{-8±2\sqrt{6}}{2\times 5}
Oblicz pierwiastek kwadratowy wartości 24.
x=\frac{-8±2\sqrt{6}}{10}
Pomnóż 2 przez 5.
x=\frac{2\sqrt{6}-8}{10}
Teraz rozwiąż równanie x=\frac{-8±2\sqrt{6}}{10} dla operatora ± będącego plusem. Dodaj -8 do 2\sqrt{6}.
x=\frac{\sqrt{6}-4}{5}
Podziel -8+2\sqrt{6} przez 10.
x=\frac{-2\sqrt{6}-8}{10}
Teraz rozwiąż równanie x=\frac{-8±2\sqrt{6}}{10} dla operatora ± będącego minusem. Odejmij 2\sqrt{6} od -8.
x=\frac{-\sqrt{6}-4}{5}
Podziel -8-2\sqrt{6} przez 10.
x=\frac{\sqrt{6}-4}{5} x=\frac{-\sqrt{6}-4}{5}
Równanie jest teraz rozwiązane.
5x^{2}+8x+2=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
5x^{2}+8x+2-2=-2
Odejmij 2 od obu stron równania.
5x^{2}+8x=-2
Odjęcie 2 od tej samej wartości pozostawia wartość 0.
\frac{5x^{2}+8x}{5}=-\frac{2}{5}
Podziel obie strony przez 5.
x^{2}+\frac{8}{5}x=-\frac{2}{5}
Dzielenie przez 5 cofa mnożenie przez 5.
x^{2}+\frac{8}{5}x+\left(\frac{4}{5}\right)^{2}=-\frac{2}{5}+\left(\frac{4}{5}\right)^{2}
Podziel \frac{8}{5}, współczynnik x terminu, 2, aby uzyskać \frac{4}{5}. Następnie Dodaj kwadrat \frac{4}{5} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+\frac{8}{5}x+\frac{16}{25}=-\frac{2}{5}+\frac{16}{25}
Podnieś do kwadratu \frac{4}{5}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+\frac{8}{5}x+\frac{16}{25}=\frac{6}{25}
Dodaj -\frac{2}{5} do \frac{16}{25}, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\left(x+\frac{4}{5}\right)^{2}=\frac{6}{25}
Współczynnik x^{2}+\frac{8}{5}x+\frac{16}{25}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{5}\right)^{2}}=\sqrt{\frac{6}{25}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{4}{5}=\frac{\sqrt{6}}{5} x+\frac{4}{5}=-\frac{\sqrt{6}}{5}
Uprość.
x=\frac{\sqrt{6}-4}{5} x=\frac{-\sqrt{6}-4}{5}
Odejmij \frac{4}{5} od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}