Rozwiąż względem x
x = \frac{\sqrt{229} - 3}{10} \approx 1,213274595
x=\frac{-\sqrt{229}-3}{10}\approx -1,813274595
Wykres
Udostępnij
Skopiowano do schowka
5x^{2}+3x-11=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-11\right)}}{2\times 5}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 5 do a, 3 do b i -11 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 5\left(-11\right)}}{2\times 5}
Podnieś do kwadratu 3.
x=\frac{-3±\sqrt{9-20\left(-11\right)}}{2\times 5}
Pomnóż -4 przez 5.
x=\frac{-3±\sqrt{9+220}}{2\times 5}
Pomnóż -20 przez -11.
x=\frac{-3±\sqrt{229}}{2\times 5}
Dodaj 9 do 220.
x=\frac{-3±\sqrt{229}}{10}
Pomnóż 2 przez 5.
x=\frac{\sqrt{229}-3}{10}
Teraz rozwiąż równanie x=\frac{-3±\sqrt{229}}{10} dla operatora ± będącego plusem. Dodaj -3 do \sqrt{229}.
x=\frac{-\sqrt{229}-3}{10}
Teraz rozwiąż równanie x=\frac{-3±\sqrt{229}}{10} dla operatora ± będącego minusem. Odejmij \sqrt{229} od -3.
x=\frac{\sqrt{229}-3}{10} x=\frac{-\sqrt{229}-3}{10}
Równanie jest teraz rozwiązane.
5x^{2}+3x-11=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
5x^{2}+3x-11-\left(-11\right)=-\left(-11\right)
Dodaj 11 do obu stron równania.
5x^{2}+3x=-\left(-11\right)
Odjęcie -11 od tej samej wartości pozostawia wartość 0.
5x^{2}+3x=11
Odejmij -11 od 0.
\frac{5x^{2}+3x}{5}=\frac{11}{5}
Podziel obie strony przez 5.
x^{2}+\frac{3}{5}x=\frac{11}{5}
Dzielenie przez 5 cofa mnożenie przez 5.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{11}{5}+\left(\frac{3}{10}\right)^{2}
Podziel \frac{3}{5}, współczynnik x terminu, 2, aby uzyskać \frac{3}{10}. Następnie Dodaj kwadrat \frac{3}{10} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{11}{5}+\frac{9}{100}
Podnieś do kwadratu \frac{3}{10}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{229}{100}
Dodaj \frac{11}{5} do \frac{9}{100}, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\left(x+\frac{3}{10}\right)^{2}=\frac{229}{100}
Współczynnik x^{2}+\frac{3}{5}x+\frac{9}{100}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{229}{100}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{3}{10}=\frac{\sqrt{229}}{10} x+\frac{3}{10}=-\frac{\sqrt{229}}{10}
Uprość.
x=\frac{\sqrt{229}-3}{10} x=\frac{-\sqrt{229}-3}{10}
Odejmij \frac{3}{10} od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}