Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

4=\left(x-1\right)^{2}
Pomnóż x-1 przez x-1, aby uzyskać \left(x-1\right)^{2}.
4=x^{2}-2x+1
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-1\right)^{2}.
x^{2}-2x+1=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
x^{2}-2x+1-4=0
Odejmij 4 od obu stron.
x^{2}-2x-3=0
Odejmij 4 od 1, aby uzyskać -3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -2 do b i -3 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Podnieś do kwadratu -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Pomnóż -4 przez -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Dodaj 4 do 12.
x=\frac{-\left(-2\right)±4}{2}
Oblicz pierwiastek kwadratowy wartości 16.
x=\frac{2±4}{2}
Liczba przeciwna do -2 to 2.
x=\frac{6}{2}
Teraz rozwiąż równanie x=\frac{2±4}{2} dla operatora ± będącego plusem. Dodaj 2 do 4.
x=3
Podziel 6 przez 2.
x=-\frac{2}{2}
Teraz rozwiąż równanie x=\frac{2±4}{2} dla operatora ± będącego minusem. Odejmij 4 od 2.
x=-1
Podziel -2 przez 2.
x=3 x=-1
Równanie jest teraz rozwiązane.
4=\left(x-1\right)^{2}
Pomnóż x-1 przez x-1, aby uzyskać \left(x-1\right)^{2}.
4=x^{2}-2x+1
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-1\right)^{2}.
x^{2}-2x+1=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\left(x-1\right)^{2}=4
Współczynnik x^{2}-2x+1. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Oblicz pierwiastek kwadratowy obu stron równania.
x-1=2 x-1=-2
Uprość.
x=3 x=-1
Dodaj 1 do obu stron równania.