Rozwiąż względem x
x=3
x=-1
Wykres
Udostępnij
Skopiowano do schowka
4=\left(x-1\right)^{2}
Pomnóż x-1 przez x-1, aby uzyskać \left(x-1\right)^{2}.
4=x^{2}-2x+1
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-1\right)^{2}.
x^{2}-2x+1=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
x^{2}-2x+1-4=0
Odejmij 4 od obu stron.
x^{2}-2x-3=0
Odejmij 4 od 1, aby uzyskać -3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -2 do b i -3 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Podnieś do kwadratu -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Pomnóż -4 przez -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Dodaj 4 do 12.
x=\frac{-\left(-2\right)±4}{2}
Oblicz pierwiastek kwadratowy wartości 16.
x=\frac{2±4}{2}
Liczba przeciwna do -2 to 2.
x=\frac{6}{2}
Teraz rozwiąż równanie x=\frac{2±4}{2} dla operatora ± będącego plusem. Dodaj 2 do 4.
x=3
Podziel 6 przez 2.
x=-\frac{2}{2}
Teraz rozwiąż równanie x=\frac{2±4}{2} dla operatora ± będącego minusem. Odejmij 4 od 2.
x=-1
Podziel -2 przez 2.
x=3 x=-1
Równanie jest teraz rozwiązane.
4=\left(x-1\right)^{2}
Pomnóż x-1 przez x-1, aby uzyskać \left(x-1\right)^{2}.
4=x^{2}-2x+1
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-1\right)^{2}.
x^{2}-2x+1=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\left(x-1\right)^{2}=4
Współczynnik x^{2}-2x+1. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Oblicz pierwiastek kwadratowy obu stron równania.
x-1=2 x-1=-2
Uprość.
x=3 x=-1
Dodaj 1 do obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}