Rozłóż na czynniki
4\left(x-5\right)\left(x-3\right)
Oblicz
4\left(x-5\right)\left(x-3\right)
Wykres
Udostępnij
Skopiowano do schowka
4\left(x^{2}-8x+15\right)
Wyłącz przed nawias 4.
a+b=-8 ab=1\times 15=15
Rozważ x^{2}-8x+15. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx+15. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-15 -3,-5
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 15.
-1-15=-16 -3-5=-8
Oblicz sumę dla każdej pary.
a=-5 b=-3
Rozwiązanie to para, która daje sumę -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Przepisz x^{2}-8x+15 jako \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
x w pierwszej i -3 w drugiej grupie.
\left(x-5\right)\left(x-3\right)
Wyłącz przed nawias wspólny czynnik x-5, używając właściwości rozdzielności.
4\left(x-5\right)\left(x-3\right)
Przepisz całe wyrażenie rozłożone na czynniki.
4x^{2}-32x+60=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 4\times 60}}{2\times 4}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 4\times 60}}{2\times 4}
Podnieś do kwadratu -32.
x=\frac{-\left(-32\right)±\sqrt{1024-16\times 60}}{2\times 4}
Pomnóż -4 przez 4.
x=\frac{-\left(-32\right)±\sqrt{1024-960}}{2\times 4}
Pomnóż -16 przez 60.
x=\frac{-\left(-32\right)±\sqrt{64}}{2\times 4}
Dodaj 1024 do -960.
x=\frac{-\left(-32\right)±8}{2\times 4}
Oblicz pierwiastek kwadratowy wartości 64.
x=\frac{32±8}{2\times 4}
Liczba przeciwna do -32 to 32.
x=\frac{32±8}{8}
Pomnóż 2 przez 4.
x=\frac{40}{8}
Teraz rozwiąż równanie x=\frac{32±8}{8} dla operatora ± będącego plusem. Dodaj 32 do 8.
x=5
Podziel 40 przez 8.
x=\frac{24}{8}
Teraz rozwiąż równanie x=\frac{32±8}{8} dla operatora ± będącego minusem. Odejmij 8 od 32.
x=3
Podziel 24 przez 8.
4x^{2}-32x+60=4\left(x-5\right)\left(x-3\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 5 za x_{1}, a wartość 3 za x_{2}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}