Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

4x^{2}+3-8x=0
Dodaj -2 i 5, aby uzyskać 3.
4x^{2}-8x+3=0
Zmień postać wielomianu, aby nadać mu postać standardową. Umieść czynniki w kolejności od najwyższej do najniższej potęgi.
a+b=-8 ab=4\times 3=12
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: 4x^{2}+ax+bx+3. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-12 -2,-6 -3,-4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 12.
-1-12=-13 -2-6=-8 -3-4=-7
Oblicz sumę dla każdej pary.
a=-6 b=-2
Rozwiązanie to para, która daje sumę -8.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
Przepisz 4x^{2}-8x+3 jako \left(4x^{2}-6x\right)+\left(-2x+3\right).
2x\left(2x-3\right)-\left(2x-3\right)
2x w pierwszej i -1 w drugiej grupie.
\left(2x-3\right)\left(2x-1\right)
Wyłącz przed nawias wspólny czynnik 2x-3, używając właściwości rozdzielności.
x=\frac{3}{2} x=\frac{1}{2}
Aby znaleźć rozwiązania równań, rozwiąż: 2x-3=0 i 2x-1=0.
4x^{2}+3-8x=0
Dodaj -2 i 5, aby uzyskać 3.
4x^{2}-8x+3=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 4 do a, -8 do b i 3 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
Podnieś do kwadratu -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
Pomnóż -4 przez 4.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
Pomnóż -16 przez 3.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
Dodaj 64 do -48.
x=\frac{-\left(-8\right)±4}{2\times 4}
Oblicz pierwiastek kwadratowy wartości 16.
x=\frac{8±4}{2\times 4}
Liczba przeciwna do -8 to 8.
x=\frac{8±4}{8}
Pomnóż 2 przez 4.
x=\frac{12}{8}
Teraz rozwiąż równanie x=\frac{8±4}{8} dla operatora ± będącego plusem. Dodaj 8 do 4.
x=\frac{3}{2}
Zredukuj ułamek \frac{12}{8} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
x=\frac{4}{8}
Teraz rozwiąż równanie x=\frac{8±4}{8} dla operatora ± będącego minusem. Odejmij 4 od 8.
x=\frac{1}{2}
Zredukuj ułamek \frac{4}{8} do najmniejszych czynników przez odejmowanie i skracanie ułamka 4.
x=\frac{3}{2} x=\frac{1}{2}
Równanie jest teraz rozwiązane.
4x^{2}+3-8x=0
Dodaj -2 i 5, aby uzyskać 3.
4x^{2}-8x=-3
Odejmij 3 od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
\frac{4x^{2}-8x}{4}=-\frac{3}{4}
Podziel obie strony przez 4.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{3}{4}
Dzielenie przez 4 cofa mnożenie przez 4.
x^{2}-2x=-\frac{3}{4}
Podziel -8 przez 4.
x^{2}-2x+1=-\frac{3}{4}+1
Podziel -2, współczynnik x terminu, 2, aby uzyskać -1. Następnie Dodaj kwadrat -1 do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-2x+1=\frac{1}{4}
Dodaj -\frac{3}{4} do 1.
\left(x-1\right)^{2}=\frac{1}{4}
Współczynnik x^{2}-2x+1. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x-1=\frac{1}{2} x-1=-\frac{1}{2}
Uprość.
x=\frac{3}{2} x=\frac{1}{2}
Dodaj 1 do obu stron równania.