Rozwiąż względem x (complex solution)
x=\frac{-1+\sqrt{23}i}{6}\approx -0,166666667+0,799305254i
x=\frac{-\sqrt{23}i-1}{6}\approx -0,166666667-0,799305254i
Wykres
Udostępnij
Skopiowano do schowka
3x^{2}+x+2=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-1±\sqrt{1^{2}-4\times 3\times 2}}{2\times 3}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 3 do a, 1 do b i 2 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\times 2}}{2\times 3}
Podnieś do kwadratu 1.
x=\frac{-1±\sqrt{1-12\times 2}}{2\times 3}
Pomnóż -4 przez 3.
x=\frac{-1±\sqrt{1-24}}{2\times 3}
Pomnóż -12 przez 2.
x=\frac{-1±\sqrt{-23}}{2\times 3}
Dodaj 1 do -24.
x=\frac{-1±\sqrt{23}i}{2\times 3}
Oblicz pierwiastek kwadratowy wartości -23.
x=\frac{-1±\sqrt{23}i}{6}
Pomnóż 2 przez 3.
x=\frac{-1+\sqrt{23}i}{6}
Teraz rozwiąż równanie x=\frac{-1±\sqrt{23}i}{6} dla operatora ± będącego plusem. Dodaj -1 do i\sqrt{23}.
x=\frac{-\sqrt{23}i-1}{6}
Teraz rozwiąż równanie x=\frac{-1±\sqrt{23}i}{6} dla operatora ± będącego minusem. Odejmij i\sqrt{23} od -1.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Równanie jest teraz rozwiązane.
3x^{2}+x+2=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
3x^{2}+x+2-2=-2
Odejmij 2 od obu stron równania.
3x^{2}+x=-2
Odjęcie 2 od tej samej wartości pozostawia wartość 0.
\frac{3x^{2}+x}{3}=-\frac{2}{3}
Podziel obie strony przez 3.
x^{2}+\frac{1}{3}x=-\frac{2}{3}
Dzielenie przez 3 cofa mnożenie przez 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
Podziel \frac{1}{3}, współczynnik x terminu, 2, aby uzyskać \frac{1}{6}. Następnie Dodaj kwadrat \frac{1}{6} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{2}{3}+\frac{1}{36}
Podnieś do kwadratu \frac{1}{6}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{23}{36}
Dodaj -\frac{2}{3} do \frac{1}{36}, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\left(x+\frac{1}{6}\right)^{2}=-\frac{23}{36}
Współczynnik x^{2}+\frac{1}{3}x+\frac{1}{36}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{1}{6}=\frac{\sqrt{23}i}{6} x+\frac{1}{6}=-\frac{\sqrt{23}i}{6}
Uprość.
x=\frac{-1+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i-1}{6}
Odejmij \frac{1}{6} od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}