Rozłóż na czynniki
3a\left(x-4\right)\left(x+1\right)
Oblicz
3a\left(x-4\right)\left(x+1\right)
Wykres
Udostępnij
Skopiowano do schowka
3\left(ax^{2}-3ax-4a\right)
Wyłącz przed nawias 3.
a\left(x^{2}-3x-4\right)
Rozważ ax^{2}-3ax-4a. Wyłącz przed nawias a.
p+q=-3 pq=1\left(-4\right)=-4
Rozważ x^{2}-3x-4. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+px+qx-4. Aby znaleźć p i q, skonfiguruj system do rozwiązania.
1,-4 2,-2
Ponieważ pq jest wartością ujemną, p i q mają przeciwne znaki. Ponieważ p+q jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -4.
1-4=-3 2-2=0
Oblicz sumę dla każdej pary.
p=-4 q=1
Rozwiązanie to para, która daje sumę -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Przepisz x^{2}-3x-4 jako \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Wyłącz przed nawias x w x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Wyłącz przed nawias wspólny czynnik x-4, używając właściwości rozdzielności.
3a\left(x-4\right)\left(x+1\right)
Przepisz całe wyrażenie rozłożone na czynniki.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}