Rozwiąż względem m
m=\frac{3}{37}\approx 0,081081081
Udostępnij
Skopiowano do schowka
3-18\times 2m=m
Pomnóż 2 przez 9, aby uzyskać 18.
3-36m=m
Pomnóż 18 przez 2, aby uzyskać 36.
3-36m-m=0
Odejmij m od obu stron.
3-37m=0
Połącz -36m i -m, aby uzyskać -37m.
-37m=-3
Odejmij 3 od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
m=\frac{-3}{-37}
Podziel obie strony przez -37.
m=\frac{3}{37}
Ułamek \frac{-3}{-37} można uprościć do postaci \frac{3}{37} przez usunięcie znaku minus z licznika i mianownika.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}