Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

3x^{2}+5x-1=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-1\right)}}{2\times 3}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-5±\sqrt{25-4\times 3\left(-1\right)}}{2\times 3}
Podnieś do kwadratu 5.
x=\frac{-5±\sqrt{25-12\left(-1\right)}}{2\times 3}
Pomnóż -4 przez 3.
x=\frac{-5±\sqrt{25+12}}{2\times 3}
Pomnóż -12 przez -1.
x=\frac{-5±\sqrt{37}}{2\times 3}
Dodaj 25 do 12.
x=\frac{-5±\sqrt{37}}{6}
Pomnóż 2 przez 3.
x=\frac{\sqrt{37}-5}{6}
Teraz rozwiąż równanie x=\frac{-5±\sqrt{37}}{6} dla operatora ± będącego plusem. Dodaj -5 do \sqrt{37}.
x=\frac{-\sqrt{37}-5}{6}
Teraz rozwiąż równanie x=\frac{-5±\sqrt{37}}{6} dla operatora ± będącego minusem. Odejmij \sqrt{37} od -5.
3x^{2}+5x-1=3\left(x-\frac{\sqrt{37}-5}{6}\right)\left(x-\frac{-\sqrt{37}-5}{6}\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość \frac{-5+\sqrt{37}}{6} za x_{1}, a wartość \frac{-5-\sqrt{37}}{6} za x_{2}.