Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=4 ab=3\times 1=3
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: 3x^{2}+ax+bx+1. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=1 b=3
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Jedyna taka para to rozwiązanie systemowe.
\left(3x^{2}+x\right)+\left(3x+1\right)
Przepisz 3x^{2}+4x+1 jako \left(3x^{2}+x\right)+\left(3x+1\right).
x\left(3x+1\right)+3x+1
Wyłącz przed nawias x w 3x^{2}+x.
\left(3x+1\right)\left(x+1\right)
Wyłącz przed nawias wspólny czynnik 3x+1, używając właściwości rozdzielności.
x=-\frac{1}{3} x=-1
Aby znaleźć rozwiązania równań, rozwiąż: 3x+1=0 i x+1=0.
3x^{2}+4x+1=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 3 do a, 4 do b i 1 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
Podnieś do kwadratu 4.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
Pomnóż -4 przez 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
Dodaj 16 do -12.
x=\frac{-4±2}{2\times 3}
Oblicz pierwiastek kwadratowy wartości 4.
x=\frac{-4±2}{6}
Pomnóż 2 przez 3.
x=-\frac{2}{6}
Teraz rozwiąż równanie x=\frac{-4±2}{6} dla operatora ± będącego plusem. Dodaj -4 do 2.
x=-\frac{1}{3}
Zredukuj ułamek \frac{-2}{6} do najmniejszych czynników przez odejmowanie i skracanie ułamka 2.
x=-\frac{6}{6}
Teraz rozwiąż równanie x=\frac{-4±2}{6} dla operatora ± będącego minusem. Odejmij 2 od -4.
x=-1
Podziel -6 przez 6.
x=-\frac{1}{3} x=-1
Równanie jest teraz rozwiązane.
3x^{2}+4x+1=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
3x^{2}+4x+1-1=-1
Odejmij 1 od obu stron równania.
3x^{2}+4x=-1
Odjęcie 1 od tej samej wartości pozostawia wartość 0.
\frac{3x^{2}+4x}{3}=-\frac{1}{3}
Podziel obie strony przez 3.
x^{2}+\frac{4}{3}x=-\frac{1}{3}
Dzielenie przez 3 cofa mnożenie przez 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(\frac{2}{3}\right)^{2}
Podziel \frac{4}{3}, współczynnik x terminu, 2, aby uzyskać \frac{2}{3}. Następnie Dodaj kwadrat \frac{2}{3} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Podnieś do kwadratu \frac{2}{3}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Dodaj -\frac{1}{3} do \frac{4}{9}, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\left(x+\frac{2}{3}\right)^{2}=\frac{1}{9}
Współczynnik x^{2}+\frac{4}{3}x+\frac{4}{9}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{2}{3}=\frac{1}{3} x+\frac{2}{3}=-\frac{1}{3}
Uprość.
x=-\frac{1}{3} x=-1
Odejmij \frac{2}{3} od obu stron równania.