Rozwiąż względem x
x = \frac{\sqrt{59} - 3}{2} \approx 2,340572874
x=\frac{-\sqrt{59}-3}{2}\approx -5,340572874
Wykres
Udostępnij
Skopiowano do schowka
2x\left(3+x\right)=25
Pomnóż obie strony równania przez 5.
6x+2x^{2}=25
Użyj właściwości rozdzielności, aby pomnożyć 2x przez 3+x.
6x+2x^{2}-25=0
Odejmij 25 od obu stron.
2x^{2}+6x-25=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-6±\sqrt{6^{2}-4\times 2\left(-25\right)}}{2\times 2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 2 do a, 6 do b i -25 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 2\left(-25\right)}}{2\times 2}
Podnieś do kwadratu 6.
x=\frac{-6±\sqrt{36-8\left(-25\right)}}{2\times 2}
Pomnóż -4 przez 2.
x=\frac{-6±\sqrt{36+200}}{2\times 2}
Pomnóż -8 przez -25.
x=\frac{-6±\sqrt{236}}{2\times 2}
Dodaj 36 do 200.
x=\frac{-6±2\sqrt{59}}{2\times 2}
Oblicz pierwiastek kwadratowy wartości 236.
x=\frac{-6±2\sqrt{59}}{4}
Pomnóż 2 przez 2.
x=\frac{2\sqrt{59}-6}{4}
Teraz rozwiąż równanie x=\frac{-6±2\sqrt{59}}{4} dla operatora ± będącego plusem. Dodaj -6 do 2\sqrt{59}.
x=\frac{\sqrt{59}-3}{2}
Podziel -6+2\sqrt{59} przez 4.
x=\frac{-2\sqrt{59}-6}{4}
Teraz rozwiąż równanie x=\frac{-6±2\sqrt{59}}{4} dla operatora ± będącego minusem. Odejmij 2\sqrt{59} od -6.
x=\frac{-\sqrt{59}-3}{2}
Podziel -6-2\sqrt{59} przez 4.
x=\frac{\sqrt{59}-3}{2} x=\frac{-\sqrt{59}-3}{2}
Równanie jest teraz rozwiązane.
2x\left(3+x\right)=25
Pomnóż obie strony równania przez 5.
6x+2x^{2}=25
Użyj właściwości rozdzielności, aby pomnożyć 2x przez 3+x.
2x^{2}+6x=25
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
\frac{2x^{2}+6x}{2}=\frac{25}{2}
Podziel obie strony przez 2.
x^{2}+\frac{6}{2}x=\frac{25}{2}
Dzielenie przez 2 cofa mnożenie przez 2.
x^{2}+3x=\frac{25}{2}
Podziel 6 przez 2.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{25}{2}+\left(\frac{3}{2}\right)^{2}
Podziel 3, współczynnik x, przez 2, aby otrzymać \frac{3}{2}. Następnie dodaj kwadrat liczby \frac{3}{2} do obu stron równania. Ten krok sprawi, że lewa strona tego równania stanie się liczbą kwadratową.
x^{2}+3x+\frac{9}{4}=\frac{25}{2}+\frac{9}{4}
Podnieś do kwadratu \frac{3}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+3x+\frac{9}{4}=\frac{59}{4}
Dodaj \frac{25}{2} do \frac{9}{4}, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\left(x+\frac{3}{2}\right)^{2}=\frac{59}{4}
Rozłóż na czynniki wyrażenie x^{2}+3x+\frac{9}{4}. Ogólnie, gdy wyrażenie x^{2}+bx+c jest liczbą kwadratową, zawsze można je rozłożyć na czynniki jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{3}{2}=\frac{\sqrt{59}}{2} x+\frac{3}{2}=-\frac{\sqrt{59}}{2}
Uprość.
x=\frac{\sqrt{59}-3}{2} x=\frac{-\sqrt{59}-3}{2}
Odejmij \frac{3}{2} od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}