Rozwiąż względem x
x=2
Wykres
Udostępnij
Skopiowano do schowka
28-3x-4=2\left(x+6\right)+x
Aby znaleźć wartość przeciwną do 3x+4, znajdź wartość przeciwną każdego czynnika.
24-3x=2\left(x+6\right)+x
Odejmij 4 od 28, aby uzyskać 24.
24-3x=2x+12+x
Użyj właściwości rozdzielności, aby pomnożyć 2 przez x+6.
24-3x=3x+12
Połącz 2x i x, aby uzyskać 3x.
24-3x-3x=12
Odejmij 3x od obu stron.
24-6x=12
Połącz -3x i -3x, aby uzyskać -6x.
-6x=12-24
Odejmij 24 od obu stron.
-6x=-12
Odejmij 24 od 12, aby uzyskać -12.
x=\frac{-12}{-6}
Podziel obie strony przez -6.
x=2
Podziel -12 przez -6, aby uzyskać 2.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}