Rozwiąż względem x
x=\frac{1}{5}=0,2
Wykres
Udostępnij
Skopiowano do schowka
a+b=-10 ab=25\times 1=25
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: 25x^{2}+ax+bx+1. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-25 -5,-5
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 25.
-1-25=-26 -5-5=-10
Oblicz sumę dla każdej pary.
a=-5 b=-5
Rozwiązanie to para, która daje sumę -10.
\left(25x^{2}-5x\right)+\left(-5x+1\right)
Przepisz 25x^{2}-10x+1 jako \left(25x^{2}-5x\right)+\left(-5x+1\right).
5x\left(5x-1\right)-\left(5x-1\right)
5x w pierwszej i -1 w drugiej grupie.
\left(5x-1\right)\left(5x-1\right)
Wyłącz przed nawias wspólny czynnik 5x-1, używając właściwości rozdzielności.
\left(5x-1\right)^{2}
Przepisz jako kwadrat dwumianu.
x=\frac{1}{5}
Aby znaleźć rozwiązanie równania, rozwiąż: 5x-1=0.
25x^{2}-10x+1=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2\times 25}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 25 do a, -10 do b i 1 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2\times 25}
Podnieś do kwadratu -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2\times 25}
Pomnóż -4 przez 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2\times 25}
Dodaj 100 do -100.
x=-\frac{-10}{2\times 25}
Oblicz pierwiastek kwadratowy wartości 0.
x=\frac{10}{2\times 25}
Liczba przeciwna do -10 to 10.
x=\frac{10}{50}
Pomnóż 2 przez 25.
x=\frac{1}{5}
Zredukuj ułamek \frac{10}{50} do najmniejszych czynników przez odejmowanie i skracanie ułamka 10.
25x^{2}-10x+1=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
25x^{2}-10x+1-1=-1
Odejmij 1 od obu stron równania.
25x^{2}-10x=-1
Odjęcie 1 od tej samej wartości pozostawia wartość 0.
\frac{25x^{2}-10x}{25}=-\frac{1}{25}
Podziel obie strony przez 25.
x^{2}+\left(-\frac{10}{25}\right)x=-\frac{1}{25}
Dzielenie przez 25 cofa mnożenie przez 25.
x^{2}-\frac{2}{5}x=-\frac{1}{25}
Zredukuj ułamek \frac{-10}{25} do najmniejszych czynników przez odejmowanie i skracanie ułamka 5.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=-\frac{1}{25}+\left(-\frac{1}{5}\right)^{2}
Podziel -\frac{2}{5}, współczynnik x terminu, 2, aby uzyskać -\frac{1}{5}. Następnie Dodaj kwadrat -\frac{1}{5} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{-1+1}{25}
Podnieś do kwadratu -\frac{1}{5}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}-\frac{2}{5}x+\frac{1}{25}=0
Dodaj -\frac{1}{25} do \frac{1}{25}, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
\left(x-\frac{1}{5}\right)^{2}=0
Współczynnik x^{2}-\frac{2}{5}x+\frac{1}{25}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{0}
Oblicz pierwiastek kwadratowy obu stron równania.
x-\frac{1}{5}=0 x-\frac{1}{5}=0
Uprość.
x=\frac{1}{5} x=\frac{1}{5}
Dodaj \frac{1}{5} do obu stron równania.
x=\frac{1}{5}
Równanie jest teraz rozwiązane. Rozwiązania są takie same.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}