Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-1 ab=2\left(-6\right)=-12
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako 2x^{2}+ax+bx-6. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-12 2,-6 3,-4
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -12.
1-12=-11 2-6=-4 3-4=-1
Oblicz sumę dla każdej pary.
a=-4 b=3
Rozwiązanie to para, która daje sumę -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Przepisz 2x^{2}-x-6 jako \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
2x w pierwszej i 3 w drugiej grupie.
\left(x-2\right)\left(2x+3\right)
Wyłącz przed nawias wspólny czynnik x-2, używając właściwości rozdzielności.
2x^{2}-x-6=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Pomnóż -4 przez 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Pomnóż -8 przez -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Dodaj 1 do 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Oblicz pierwiastek kwadratowy wartości 49.
x=\frac{1±7}{2\times 2}
Liczba przeciwna do -1 to 1.
x=\frac{1±7}{4}
Pomnóż 2 przez 2.
x=\frac{8}{4}
Teraz rozwiąż równanie x=\frac{1±7}{4} dla operatora ± będącego plusem. Dodaj 1 do 7.
x=2
Podziel 8 przez 4.
x=-\frac{6}{4}
Teraz rozwiąż równanie x=\frac{1±7}{4} dla operatora ± będącego minusem. Odejmij 7 od 1.
x=-\frac{3}{2}
Zredukuj ułamek \frac{-6}{4} do najmniejszych czynników przez odejmowanie i skracanie ułamka 2.
2x^{2}-x-6=2\left(x-2\right)\left(x-\left(-\frac{3}{2}\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 2 za x_{1}, a wartość -\frac{3}{2} za x_{2}.
2x^{2}-x-6=2\left(x-2\right)\left(x+\frac{3}{2}\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.
2x^{2}-x-6=2\left(x-2\right)\times \frac{2x+3}{2}
Dodaj \frac{3}{2} do x, znajdując wspólny mianownik i dodając liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
2x^{2}-x-6=\left(x-2\right)\left(2x+3\right)
Skróć największy wspólny dzielnik 2 w 2 i 2.