Oblicz
\frac{2\left(\left(3x-1\right)^{2}+4\right)}{9}
Rozwiń
2x^{2}-\frac{4x}{3}+\frac{10}{9}
Wykres
Udostępnij
Skopiowano do schowka
2\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+1-\frac{1}{9}
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-\frac{1}{3}\right)^{2}.
2x^{2}-\frac{4}{3}x+\frac{2}{9}+1-\frac{1}{9}
Użyj właściwości rozdzielności, aby pomnożyć 2 przez x^{2}-\frac{2}{3}x+\frac{1}{9}.
2x^{2}-\frac{4}{3}x+\frac{11}{9}-\frac{1}{9}
Dodaj \frac{2}{9} i 1, aby uzyskać \frac{11}{9}.
2x^{2}-\frac{4}{3}x+\frac{10}{9}
Odejmij \frac{1}{9} od \frac{11}{9}, aby uzyskać \frac{10}{9}.
2\left(x^{2}-\frac{2}{3}x+\frac{1}{9}\right)+1-\frac{1}{9}
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-\frac{1}{3}\right)^{2}.
2x^{2}-\frac{4}{3}x+\frac{2}{9}+1-\frac{1}{9}
Użyj właściwości rozdzielności, aby pomnożyć 2 przez x^{2}-\frac{2}{3}x+\frac{1}{9}.
2x^{2}-\frac{4}{3}x+\frac{11}{9}-\frac{1}{9}
Dodaj \frac{2}{9} i 1, aby uzyskać \frac{11}{9}.
2x^{2}-\frac{4}{3}x+\frac{10}{9}
Odejmij \frac{1}{9} od \frac{11}{9}, aby uzyskać \frac{10}{9}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}