Oblicz
4n-1
Rozwiń
4n-1
Udostępnij
Skopiowano do schowka
2n^{2}+n-2\left(n^{2}-2n+1\right)-n+1
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(n-1\right)^{2}.
2n^{2}+n-2n^{2}+4n-2-n+1
Użyj właściwości rozdzielności, aby pomnożyć -2 przez n^{2}-2n+1.
n+4n-2-n+1
Połącz 2n^{2} i -2n^{2}, aby uzyskać 0.
5n-2-n+1
Połącz n i 4n, aby uzyskać 5n.
4n-2+1
Połącz 5n i -n, aby uzyskać 4n.
4n-1
Dodaj -2 i 1, aby uzyskać -1.
2n^{2}+n-2\left(n^{2}-2n+1\right)-n+1
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(n-1\right)^{2}.
2n^{2}+n-2n^{2}+4n-2-n+1
Użyj właściwości rozdzielności, aby pomnożyć -2 przez n^{2}-2n+1.
n+4n-2-n+1
Połącz 2n^{2} i -2n^{2}, aby uzyskać 0.
5n-2-n+1
Połącz n i 4n, aby uzyskać 5n.
4n-2+1
Połącz 5n i -n, aby uzyskać 4n.
4n-1
Dodaj -2 i 1, aby uzyskać -1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}