Oblicz
16\sqrt{6}\approx 39,191835885
Udostępnij
Skopiowano do schowka
12\sqrt{2}\times \frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Umożliwia racjonalizację mianownika \frac{4}{\sqrt{3}} przez mnożenie licznika i mianownika przez \sqrt{3}.
12\sqrt{2}\times \frac{4\sqrt{3}}{3}
Kwadrat liczby \sqrt{3} to 3.
4\times 4\sqrt{3}\sqrt{2}
Skróć największy wspólny dzielnik 3 w 12 i 3.
16\sqrt{3}\sqrt{2}
Pomnóż 4 przez 4, aby uzyskać 16.
16\sqrt{6}
Aby pomnożyć \sqrt{3} i \sqrt{2}, pomnóż liczby w polu pierwiastek kwadratowy.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}