Rozwiąż względem x
x=-1
x=13
Wykres
Udostępnij
Skopiowano do schowka
1x^{2}-12x-13=0
Odejmij 13 od obu stron.
x^{2}-12x-13=0
Zmień kolejność czynników.
a+b=-12 ab=-13
Aby rozwiązać równanie, rozłóż x^{2}-12x-13 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-13 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(x-13\right)\left(x+1\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=13 x=-1
Aby znaleźć rozwiązania równań, rozwiąż: x-13=0 i x+1=0.
1x^{2}-12x-13=0
Odejmij 13 od obu stron.
x^{2}-12x-13=0
Zmień kolejność czynników.
a+b=-12 ab=1\left(-13\right)=-13
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx-13. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-13 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(x^{2}-13x\right)+\left(x-13\right)
Przepisz x^{2}-12x-13 jako \left(x^{2}-13x\right)+\left(x-13\right).
x\left(x-13\right)+x-13
Wyłącz przed nawias x w x^{2}-13x.
\left(x-13\right)\left(x+1\right)
Wyłącz przed nawias wspólny czynnik x-13, używając właściwości rozdzielności.
x=13 x=-1
Aby znaleźć rozwiązania równań, rozwiąż: x-13=0 i x+1=0.
x^{2}-12x=13
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x^{2}-12x-13=13-13
Odejmij 13 od obu stron równania.
x^{2}-12x-13=0
Odjęcie 13 od tej samej wartości pozostawia wartość 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-13\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -12 do b i -13 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-13\right)}}{2}
Podnieś do kwadratu -12.
x=\frac{-\left(-12\right)±\sqrt{144+52}}{2}
Pomnóż -4 przez -13.
x=\frac{-\left(-12\right)±\sqrt{196}}{2}
Dodaj 144 do 52.
x=\frac{-\left(-12\right)±14}{2}
Oblicz pierwiastek kwadratowy wartości 196.
x=\frac{12±14}{2}
Liczba przeciwna do -12 to 12.
x=\frac{26}{2}
Teraz rozwiąż równanie x=\frac{12±14}{2} dla operatora ± będącego plusem. Dodaj 12 do 14.
x=13
Podziel 26 przez 2.
x=-\frac{2}{2}
Teraz rozwiąż równanie x=\frac{12±14}{2} dla operatora ± będącego minusem. Odejmij 14 od 12.
x=-1
Podziel -2 przez 2.
x=13 x=-1
Równanie jest teraz rozwiązane.
x^{2}-12x=13
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
x^{2}-12x+\left(-6\right)^{2}=13+\left(-6\right)^{2}
Podziel -12, współczynnik x terminu, 2, aby uzyskać -6. Następnie Dodaj kwadrat -6 do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-12x+36=13+36
Podnieś do kwadratu -6.
x^{2}-12x+36=49
Dodaj 13 do 36.
\left(x-6\right)^{2}=49
Współczynnik x^{2}-12x+36. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{49}
Oblicz pierwiastek kwadratowy obu stron równania.
x-6=7 x-6=-7
Uprość.
x=13 x=-1
Dodaj 6 do obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}