Oblicz
\frac{1276}{3131}\approx 0,407537528
Rozłóż na czynniki
\frac{2 ^ {2} \cdot 11 \cdot 29}{31 \cdot 101} = 0,407537527946343
Udostępnij
Skopiowano do schowka
\frac{\frac{9+2}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0\times 6}{145}}
Pomnóż 1 przez 9, aby uzyskać 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0\times 6}{145}}
Dodaj 9 i 2, aby uzyskać 11.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{9+1}{9}\times 0\times 6}{145}}
Pomnóż 1 przez 9, aby uzyskać 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10}{9}\times 0\times 6}{145}}
Dodaj 9 i 1, aby uzyskać 10.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+0\times 6}{145}}
Pomnóż \frac{10}{9} przez 0, aby uzyskać 0.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+0}{145}}
Pomnóż 0 przez 6, aby uzyskać 0.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}}{145}}
Dodaj \frac{5}{36} i 0, aby uzyskać \frac{5}{36}.
\frac{\frac{11}{9}}{3-\frac{5}{36\times 145}}
Pokaż wartość \frac{\frac{5}{36}}{145} jako pojedynczy ułamek.
\frac{\frac{11}{9}}{3-\frac{5}{5220}}
Pomnóż 36 przez 145, aby uzyskać 5220.
\frac{\frac{11}{9}}{3-\frac{1}{1044}}
Zredukuj ułamek \frac{5}{5220} do najmniejszych czynników przez odejmowanie i skracanie ułamka 5.
\frac{\frac{11}{9}}{\frac{3132}{1044}-\frac{1}{1044}}
Przekonwertuj liczbę 3 na ułamek \frac{3132}{1044}.
\frac{\frac{11}{9}}{\frac{3132-1}{1044}}
Ponieważ \frac{3132}{1044} i \frac{1}{1044} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{\frac{11}{9}}{\frac{3131}{1044}}
Odejmij 1 od 3132, aby uzyskać 3131.
\frac{11}{9}\times \frac{1044}{3131}
Podziel \frac{11}{9} przez \frac{3131}{1044}, mnożąc \frac{11}{9} przez odwrotność \frac{3131}{1044}.
\frac{11\times 1044}{9\times 3131}
Pomnóż \frac{11}{9} przez \frac{1044}{3131}, mnożąc oba liczniki i oba mianowniki.
\frac{11484}{28179}
Wykonaj operacje mnożenia w ułamku \frac{11\times 1044}{9\times 3131}.
\frac{1276}{3131}
Zredukuj ułamek \frac{11484}{28179} do najmniejszych czynników przez odejmowanie i skracanie ułamka 9.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}