Rozwiąż względem x
x=0
Wykres
Udostępnij
Skopiowano do schowka
-24-8x+3\left(3-x\right)-5=-6x-10\left(x+2\right)
Użyj właściwości rozdzielności, aby pomnożyć -8 przez 3+x.
-24-8x+9-3x-5=-6x-10\left(x+2\right)
Użyj właściwości rozdzielności, aby pomnożyć 3 przez 3-x.
-15-8x-3x-5=-6x-10\left(x+2\right)
Dodaj -24 i 9, aby uzyskać -15.
-15-11x-5=-6x-10\left(x+2\right)
Połącz -8x i -3x, aby uzyskać -11x.
-20-11x=-6x-10\left(x+2\right)
Odejmij 5 od -15, aby uzyskać -20.
-20-11x=-6x-10x-20
Użyj właściwości rozdzielności, aby pomnożyć -10 przez x+2.
-20-11x=-16x-20
Połącz -6x i -10x, aby uzyskać -16x.
-20-11x+16x=-20
Dodaj 16x do obu stron.
-20+5x=-20
Połącz -11x i 16x, aby uzyskać 5x.
5x=-20+20
Dodaj 20 do obu stron.
5x=0
Dodaj -20 i 20, aby uzyskać 0.
x=0
Iloczyn dwóch liczb jest równy 0, jeśli co najmniej jedna z nich jest równa 0. Liczba 5 nie jest równa 0, więc wartość x musi być równa 0.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}