Rozwiąż względem x
x = -\frac{3}{10} = -0,3
Rozwiąż względem y
y = \frac{3}{10} = 0,3
Wykres
Udostępnij
Skopiowano do schowka
-5x+10y=3+5x
Odejmij 12 od 15, aby uzyskać 3.
-5x+10y-5x=3
Odejmij 5x od obu stron.
-10x+10y=3
Połącz -5x i -5x, aby uzyskać -10x.
-10x=3-10y
Odejmij 10y od obu stron.
\frac{-10x}{-10}=\frac{3-10y}{-10}
Podziel obie strony przez -10.
x=\frac{3-10y}{-10}
Dzielenie przez -10 cofa mnożenie przez -10.
x=y-\frac{3}{10}
Podziel 3-10y przez -10.
-5x+10y=3+5x
Odejmij 12 od 15, aby uzyskać 3.
10y=3+5x+5x
Dodaj 5x do obu stron.
10y=3+10x
Połącz 5x i 5x, aby uzyskać 10x.
10y=10x+3
Równanie jest w postaci standardowej.
\frac{10y}{10}=\frac{10x+3}{10}
Podziel obie strony przez 10.
y=\frac{10x+3}{10}
Dzielenie przez 10 cofa mnożenie przez 10.
y=x+\frac{3}{10}
Podziel 3+10x przez 10.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}