Oblicz
-\frac{23}{2}=-11,5
Rozłóż na czynniki
-\frac{23}{2} = -11\frac{1}{2} = -11,5
Udostępnij
Skopiowano do schowka
-\frac{9+2}{3}-\frac{7\times 6+5}{6}
Pomnóż 3 przez 3, aby uzyskać 9.
-\frac{11}{3}-\frac{7\times 6+5}{6}
Dodaj 9 i 2, aby uzyskać 11.
-\frac{11}{3}-\frac{42+5}{6}
Pomnóż 7 przez 6, aby uzyskać 42.
-\frac{11}{3}-\frac{47}{6}
Dodaj 42 i 5, aby uzyskać 47.
-\frac{22}{6}-\frac{47}{6}
Najmniejsza wspólna wielokrotność wartości 3 i 6 to 6. Przekonwertuj wartości -\frac{11}{3} i \frac{47}{6} na ułamki z mianownikiem 6.
\frac{-22-47}{6}
Ponieważ -\frac{22}{6} i \frac{47}{6} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{-69}{6}
Odejmij 47 od -22, aby uzyskać -69.
-\frac{23}{2}
Zredukuj ułamek \frac{-69}{6} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}