Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{2}-4x+4=9
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Odejmij 9 od obu stron.
x^{2}-4x-5=0
Odejmij 9 od 4, aby uzyskać -5.
a+b=-4 ab=-5
Aby rozwiązać równanie, rozłóż x^{2}-4x-5 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-5 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(x-5\right)\left(x+1\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=5 x=-1
Aby znaleźć rozwiązania równań, rozwiąż: x-5=0 i x+1=0.
x^{2}-4x+4=9
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Odejmij 9 od obu stron.
x^{2}-4x-5=0
Odejmij 9 od 4, aby uzyskać -5.
a+b=-4 ab=1\left(-5\right)=-5
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx-5. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-5 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(x^{2}-5x\right)+\left(x-5\right)
Przepisz x^{2}-4x-5 jako \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Wyłącz przed nawias x w x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Wyłącz przed nawias wspólny czynnik x-5, używając właściwości rozdzielności.
x=5 x=-1
Aby znaleźć rozwiązania równań, rozwiąż: x-5=0 i x+1=0.
x^{2}-4x+4=9
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Odejmij 9 od obu stron.
x^{2}-4x-5=0
Odejmij 9 od 4, aby uzyskać -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -4 do b i -5 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Podnieś do kwadratu -4.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Pomnóż -4 przez -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Dodaj 16 do 20.
x=\frac{-\left(-4\right)±6}{2}
Oblicz pierwiastek kwadratowy wartości 36.
x=\frac{4±6}{2}
Liczba przeciwna do -4 to 4.
x=\frac{10}{2}
Teraz rozwiąż równanie x=\frac{4±6}{2} dla operatora ± będącego plusem. Dodaj 4 do 6.
x=5
Podziel 10 przez 2.
x=-\frac{2}{2}
Teraz rozwiąż równanie x=\frac{4±6}{2} dla operatora ± będącego minusem. Odejmij 6 od 4.
x=-1
Podziel -2 przez 2.
x=5 x=-1
Równanie jest teraz rozwiązane.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Oblicz pierwiastek kwadratowy obu stron równania.
x-2=3 x-2=-3
Uprość.
x=5 x=-1
Dodaj 2 do obu stron równania.