Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozwiń
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż x-\left(-1+3i\right) przez x-\left(-1+3i\right), aby uzyskać \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Liczba przeciwna do -6-i to 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj właściwości rozdzielności, aby pomnożyć x+\left(6+i\right) przez x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj właściwości rozdzielności, aby pomnożyć x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) przez \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż -1 przez -6+i, aby uzyskać 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż -1 przez -1+3i, aby uzyskać 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj właściwości rozdzielności, aby pomnożyć x przez x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości x^{2}+\left(6-i\right)x przez każdy czynnik wartości x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Połącz \left(2-6i\right)x^{3} i \left(6-i\right)x^{3}, aby uzyskać \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Połącz \left(-8-6i\right)x^{2} i \left(6-38i\right)x^{2}, aby uzyskać \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż -1 przez -6+i, aby uzyskać 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Pomnóż -1 przez -1+3i, aby uzyskać 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Użyj właściwości rozdzielności, aby pomnożyć 6+i przez x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \left(6+i\right)x+37 przez każdy czynnik wartości x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
Połącz \left(18-34i\right)x^{2} i 37x^{2}, aby uzyskać \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Połącz \left(-42-44i\right)x i \left(74-222i\right)x, aby uzyskać \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Połącz \left(8-7i\right)x^{3} i \left(6+i\right)x^{3}, aby uzyskać \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
Połącz \left(-2-44i\right)x^{2} i \left(55-34i\right)x^{2}, aby uzyskać \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Połącz \left(-54-28i\right)x i \left(32-266i\right)x, aby uzyskać \left(-22-294i\right)x.
\left(x-\left(-6-i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż x-\left(-1+3i\right) przez x-\left(-1+3i\right), aby uzyskać \left(x-\left(-1+3i\right)\right)^{2}.
\left(x+\left(6+i\right)\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Liczba przeciwna do -6-i to 6+i.
\left(x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj właściwości rozdzielności, aby pomnożyć x+\left(6+i\right) przez x-\left(-6+i\right).
x\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj właściwości rozdzielności, aby pomnożyć x\left(x-\left(-6+i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right) przez \left(x-\left(-1+3i\right)\right)^{2}.
x\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż -1 przez -6+i, aby uzyskać 6-i.
x\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż -1 przez -1+3i, aby uzyskać 1-3i.
x\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+\left(1-3i\right)\right)^{2}.
\left(x^{2}+\left(6-i\right)x\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Użyj właściwości rozdzielności, aby pomnożyć x przez x+\left(6-i\right).
x^{4}+\left(2-6i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-i\right)x^{3}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości x^{2}+\left(6-i\right)x przez każdy czynnik wartości x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-8-6i\right)x^{2}+\left(6-38i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Połącz \left(2-6i\right)x^{3} i \left(6-i\right)x^{3}, aby uzyskać \left(8-7i\right)x^{3}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x-\left(-6+i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Połącz \left(-8-6i\right)x^{2} i \left(6-38i\right)x^{2}, aby uzyskać \left(-2-44i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x-\left(-1+3i\right)\right)^{2}
Pomnóż -1 przez -6+i, aby uzyskać 6-i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x+\left(1-3i\right)\right)^{2}
Pomnóż -1 przez -1+3i, aby uzyskać 1-3i.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)\left(x+\left(6-i\right)\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+\left(1-3i\right)\right)^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(\left(6+i\right)x+37\right)\left(x^{2}+\left(2-6i\right)x+\left(-8-6i\right)\right)
Użyj właściwości rozdzielności, aby pomnożyć 6+i przez x+\left(6-i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(18-34i\right)x^{2}+\left(-42-44i\right)x+37x^{2}+\left(74-222i\right)x+\left(-296-222i\right)
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości \left(6+i\right)x+37 przez każdy czynnik wartości x^{2}+\left(2-6i\right)x+\left(-8-6i\right).
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(-42-44i\right)x+\left(74-222i\right)x+\left(-296-222i\right)
Połącz \left(18-34i\right)x^{2} i 37x^{2}, aby uzyskać \left(55-34i\right)x^{2}.
x^{4}+\left(8-7i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(6+i\right)x^{3}+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Połącz \left(-42-44i\right)x i \left(74-222i\right)x, aby uzyskać \left(32-266i\right)x.
x^{4}+\left(14-6i\right)x^{3}+\left(-2-44i\right)x^{2}+\left(-54-28i\right)x+\left(55-34i\right)x^{2}+\left(32-266i\right)x+\left(-296-222i\right)
Połącz \left(8-7i\right)x^{3} i \left(6+i\right)x^{3}, aby uzyskać \left(14-6i\right)x^{3}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-54-28i\right)x+\left(32-266i\right)x+\left(-296-222i\right)
Połącz \left(-2-44i\right)x^{2} i \left(55-34i\right)x^{2}, aby uzyskać \left(53-78i\right)x^{2}.
x^{4}+\left(14-6i\right)x^{3}+\left(53-78i\right)x^{2}+\left(-22-294i\right)x+\left(-296-222i\right)
Połącz \left(-54-28i\right)x i \left(32-266i\right)x, aby uzyskać \left(-22-294i\right)x.