Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{2}-4=3x+2
Rozważ \left(x+2\right)\left(x-2\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu 2.
x^{2}-4-3x=2
Odejmij 3x od obu stron.
x^{2}-4-3x-2=0
Odejmij 2 od obu stron.
x^{2}-6-3x=0
Odejmij 2 od -4, aby uzyskać -6.
x^{2}-3x-6=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -3 do b i -6 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)}}{2}
Podnieś do kwadratu -3.
x=\frac{-\left(-3\right)±\sqrt{9+24}}{2}
Pomnóż -4 przez -6.
x=\frac{-\left(-3\right)±\sqrt{33}}{2}
Dodaj 9 do 24.
x=\frac{3±\sqrt{33}}{2}
Liczba przeciwna do -3 to 3.
x=\frac{\sqrt{33}+3}{2}
Teraz rozwiąż równanie x=\frac{3±\sqrt{33}}{2} dla operatora ± będącego plusem. Dodaj 3 do \sqrt{33}.
x=\frac{3-\sqrt{33}}{2}
Teraz rozwiąż równanie x=\frac{3±\sqrt{33}}{2} dla operatora ± będącego minusem. Odejmij \sqrt{33} od 3.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
Równanie jest teraz rozwiązane.
x^{2}-4=3x+2
Rozważ \left(x+2\right)\left(x-2\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu 2.
x^{2}-4-3x=2
Odejmij 3x od obu stron.
x^{2}-3x=2+4
Dodaj 4 do obu stron.
x^{2}-3x=6
Dodaj 2 i 4, aby uzyskać 6.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=6+\left(-\frac{3}{2}\right)^{2}
Podziel -3, współczynnik x terminu, 2, aby uzyskać -\frac{3}{2}. Następnie Dodaj kwadrat -\frac{3}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-3x+\frac{9}{4}=6+\frac{9}{4}
Podnieś do kwadratu -\frac{3}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}-3x+\frac{9}{4}=\frac{33}{4}
Dodaj 6 do \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{33}{4}
Współczynnik x^{2}-3x+\frac{9}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{33}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x-\frac{3}{2}=\frac{\sqrt{33}}{2} x-\frac{3}{2}=-\frac{\sqrt{33}}{2}
Uprość.
x=\frac{\sqrt{33}+3}{2} x=\frac{3-\sqrt{33}}{2}
Dodaj \frac{3}{2} do obu stron równania.