Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{2}+20x+100=25
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+10\right)^{2}.
x^{2}+20x+100-25=0
Odejmij 25 od obu stron.
x^{2}+20x+75=0
Odejmij 25 od 100, aby uzyskać 75.
a+b=20 ab=75
Aby rozwiązać równanie, rozłóż x^{2}+20x+75 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,75 3,25 5,15
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 75.
1+75=76 3+25=28 5+15=20
Oblicz sumę dla każdej pary.
a=5 b=15
Rozwiązanie to para, która daje sumę 20.
\left(x+5\right)\left(x+15\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=-5 x=-15
Aby znaleźć rozwiązania równań, rozwiąż: x+5=0 i x+15=0.
x^{2}+20x+100=25
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+10\right)^{2}.
x^{2}+20x+100-25=0
Odejmij 25 od obu stron.
x^{2}+20x+75=0
Odejmij 25 od 100, aby uzyskać 75.
a+b=20 ab=1\times 75=75
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+75. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,75 3,25 5,15
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 75.
1+75=76 3+25=28 5+15=20
Oblicz sumę dla każdej pary.
a=5 b=15
Rozwiązanie to para, która daje sumę 20.
\left(x^{2}+5x\right)+\left(15x+75\right)
Przepisz x^{2}+20x+75 jako \left(x^{2}+5x\right)+\left(15x+75\right).
x\left(x+5\right)+15\left(x+5\right)
x w pierwszej i 15 w drugiej grupie.
\left(x+5\right)\left(x+15\right)
Wyłącz przed nawias wspólny czynnik x+5, używając właściwości rozdzielności.
x=-5 x=-15
Aby znaleźć rozwiązania równań, rozwiąż: x+5=0 i x+15=0.
x^{2}+20x+100=25
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+10\right)^{2}.
x^{2}+20x+100-25=0
Odejmij 25 od obu stron.
x^{2}+20x+75=0
Odejmij 25 od 100, aby uzyskać 75.
x=\frac{-20±\sqrt{20^{2}-4\times 75}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 20 do b i 75 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 75}}{2}
Podnieś do kwadratu 20.
x=\frac{-20±\sqrt{400-300}}{2}
Pomnóż -4 przez 75.
x=\frac{-20±\sqrt{100}}{2}
Dodaj 400 do -300.
x=\frac{-20±10}{2}
Oblicz pierwiastek kwadratowy wartości 100.
x=-\frac{10}{2}
Teraz rozwiąż równanie x=\frac{-20±10}{2} dla operatora ± będącego plusem. Dodaj -20 do 10.
x=-5
Podziel -10 przez 2.
x=-\frac{30}{2}
Teraz rozwiąż równanie x=\frac{-20±10}{2} dla operatora ± będącego minusem. Odejmij 10 od -20.
x=-15
Podziel -30 przez 2.
x=-5 x=-15
Równanie jest teraz rozwiązane.
\sqrt{\left(x+10\right)^{2}}=\sqrt{25}
Oblicz pierwiastek kwadratowy obu stron równania.
x+10=5 x+10=-5
Uprość.
x=-5 x=-15
Odejmij 10 od obu stron równania.