Oblicz
\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}
Rozwiń
\frac{k^{3}}{3}+\frac{3k^{2}}{2}+\frac{13k}{6}+1
Udostępnij
Skopiowano do schowka
\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}
Dodaj 2 i 1, aby uzyskać 3.
\frac{\left(k^{2}+2k+k+2\right)\left(2k+3\right)}{6}
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości k+1 przez każdy czynnik wartości k+2.
\frac{\left(k^{2}+3k+2\right)\left(2k+3\right)}{6}
Połącz 2k i k, aby uzyskać 3k.
\frac{2k^{3}+3k^{2}+6k^{2}+9k+4k+6}{6}
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości k^{2}+3k+2 przez każdy czynnik wartości 2k+3.
\frac{2k^{3}+9k^{2}+9k+4k+6}{6}
Połącz 3k^{2} i 6k^{2}, aby uzyskać 9k^{2}.
\frac{2k^{3}+9k^{2}+13k+6}{6}
Połącz 9k i 4k, aby uzyskać 13k.
\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}
Dodaj 2 i 1, aby uzyskać 3.
\frac{\left(k^{2}+2k+k+2\right)\left(2k+3\right)}{6}
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości k+1 przez każdy czynnik wartości k+2.
\frac{\left(k^{2}+3k+2\right)\left(2k+3\right)}{6}
Połącz 2k i k, aby uzyskać 3k.
\frac{2k^{3}+3k^{2}+6k^{2}+9k+4k+6}{6}
Aby zastosować właściwość rozdzielności, pomnóż każdy czynnik wartości k^{2}+3k+2 przez każdy czynnik wartości 2k+3.
\frac{2k^{3}+9k^{2}+9k+4k+6}{6}
Połącz 3k^{2} i 6k^{2}, aby uzyskać 9k^{2}.
\frac{2k^{3}+9k^{2}+13k+6}{6}
Połącz 9k i 4k, aby uzyskać 13k.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}