( 2 x ^ { 3 } - 4 y ^ { 3 } ) ^ { 2 } = d y
Rozwiąż względem d (complex solution)
\left\{\begin{matrix}d=\frac{4\left(x^{3}-2y^{3}\right)^{2}}{y}\text{, }&y\neq 0\\d\in \mathrm{C}\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Rozwiąż względem d
\left\{\begin{matrix}d=\frac{4\left(x^{3}-2y^{3}\right)^{2}}{y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Rozwiąż względem x (complex solution)
x\in \frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{y}\left(4y^{\frac{5}{2}}+\sqrt{d}\right)}}{2},\frac{2^{\frac{2}{3}}e^{\frac{4\pi i}{3}}\sqrt[3]{\sqrt{y}\left(4y^{\frac{5}{2}}+\sqrt{d}\right)}}{2},\frac{2^{\frac{2}{3}}e^{\frac{2\pi i}{3}}\sqrt[3]{\sqrt{y}\left(4y^{\frac{5}{2}}+\sqrt{d}\right)}}{2},\frac{2^{\frac{2}{3}}e^{\frac{4\pi i}{3}}\sqrt[3]{\sqrt{y}\left(4y^{\frac{5}{2}}-\sqrt{d}\right)}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{y}\left(4y^{\frac{5}{2}}-\sqrt{d}\right)}}{2},\frac{2^{\frac{2}{3}}e^{\frac{2\pi i}{3}}\sqrt[3]{\sqrt{y}\left(4y^{\frac{5}{2}}-\sqrt{d}\right)}}{2}
Rozwiąż względem x
\left\{\begin{matrix}x=\frac{2^{\frac{2}{3}}\sqrt[3]{4y^{3}-\sqrt{dy}}}{2}\text{; }x=\frac{2^{\frac{2}{3}}\sqrt[3]{4y^{3}+\sqrt{dy}}}{2}\text{, }&d\leq 0\text{ and }y\leq 0\\x=\frac{2^{\frac{2}{3}}\sqrt[6]{y}\sqrt[3]{4y^{\frac{5}{2}}-\sqrt{d}}}{2}\text{; }x=\frac{2^{\frac{2}{3}}\sqrt[6]{y}\sqrt[3]{4y^{\frac{5}{2}}+\sqrt{d}}}{2}\text{, }&y\geq 0\text{ and }d\geq 0\end{matrix}\right,
Wykres
Udostępnij
Skopiowano do schowka
4\left(x^{3}\right)^{2}-16x^{3}y^{3}+16\left(y^{3}\right)^{2}=dy
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(2x^{3}-4y^{3}\right)^{2}.
4x^{6}-16x^{3}y^{3}+16\left(y^{3}\right)^{2}=dy
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 3 przez 2, aby uzyskać 6.
4x^{6}-16x^{3}y^{3}+16y^{6}=dy
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 3 przez 2, aby uzyskać 6.
dy=4x^{6}-16x^{3}y^{3}+16y^{6}
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
yd=4x^{6}-16x^{3}y^{3}+16y^{6}
Równanie jest w postaci standardowej.
\frac{yd}{y}=\frac{4\left(x^{3}-2y^{3}\right)^{2}}{y}
Podziel obie strony przez y.
d=\frac{4\left(x^{3}-2y^{3}\right)^{2}}{y}
Dzielenie przez y cofa mnożenie przez y.
4\left(x^{3}\right)^{2}-16x^{3}y^{3}+16\left(y^{3}\right)^{2}=dy
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(2x^{3}-4y^{3}\right)^{2}.
4x^{6}-16x^{3}y^{3}+16\left(y^{3}\right)^{2}=dy
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 3 przez 2, aby uzyskać 6.
4x^{6}-16x^{3}y^{3}+16y^{6}=dy
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 3 przez 2, aby uzyskać 6.
dy=4x^{6}-16x^{3}y^{3}+16y^{6}
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
yd=4x^{6}-16x^{3}y^{3}+16y^{6}
Równanie jest w postaci standardowej.
\frac{yd}{y}=\frac{4\left(x^{3}-2y^{3}\right)^{2}}{y}
Podziel obie strony przez y.
d=\frac{4\left(x^{3}-2y^{3}\right)^{2}}{y}
Dzielenie przez y cofa mnożenie przez y.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}