Rozwiąż względem x
x=-1
x=-4
Wykres
Udostępnij
Skopiowano do schowka
4x^{2}+20x+25-9=0
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(2x+5\right)^{2}.
4x^{2}+20x+16=0
Odejmij 9 od 25, aby uzyskać 16.
x^{2}+5x+4=0
Podziel obie strony przez 4.
a+b=5 ab=1\times 4=4
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+4. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,4 2,2
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b ma wartość dodatnią, a i b są dodatnie. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 4.
1+4=5 2+2=4
Oblicz sumę dla każdej pary.
a=1 b=4
Rozwiązanie to para, która daje sumę 5.
\left(x^{2}+x\right)+\left(4x+4\right)
Przepisz x^{2}+5x+4 jako \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
x w pierwszej i 4 w drugiej grupie.
\left(x+1\right)\left(x+4\right)
Wyłącz przed nawias wspólny czynnik x+1, używając właściwości rozdzielności.
x=-1 x=-4
Aby znaleźć rozwiązania równań, rozwiąż: x+1=0 i x+4=0.
4x^{2}+20x+25-9=0
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(2x+5\right)^{2}.
4x^{2}+20x+16=0
Odejmij 9 od 25, aby uzyskać 16.
x=\frac{-20±\sqrt{20^{2}-4\times 4\times 16}}{2\times 4}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 4 do a, 20 do b i 16 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 4\times 16}}{2\times 4}
Podnieś do kwadratu 20.
x=\frac{-20±\sqrt{400-16\times 16}}{2\times 4}
Pomnóż -4 przez 4.
x=\frac{-20±\sqrt{400-256}}{2\times 4}
Pomnóż -16 przez 16.
x=\frac{-20±\sqrt{144}}{2\times 4}
Dodaj 400 do -256.
x=\frac{-20±12}{2\times 4}
Oblicz pierwiastek kwadratowy wartości 144.
x=\frac{-20±12}{8}
Pomnóż 2 przez 4.
x=-\frac{8}{8}
Teraz rozwiąż równanie x=\frac{-20±12}{8} dla operatora ± będącego plusem. Dodaj -20 do 12.
x=-1
Podziel -8 przez 8.
x=-\frac{32}{8}
Teraz rozwiąż równanie x=\frac{-20±12}{8} dla operatora ± będącego minusem. Odejmij 12 od -20.
x=-4
Podziel -32 przez 8.
x=-1 x=-4
Równanie jest teraz rozwiązane.
4x^{2}+20x+25-9=0
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(2x+5\right)^{2}.
4x^{2}+20x+16=0
Odejmij 9 od 25, aby uzyskać 16.
4x^{2}+20x=-16
Odejmij 16 od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
\frac{4x^{2}+20x}{4}=-\frac{16}{4}
Podziel obie strony przez 4.
x^{2}+\frac{20}{4}x=-\frac{16}{4}
Dzielenie przez 4 cofa mnożenie przez 4.
x^{2}+5x=-\frac{16}{4}
Podziel 20 przez 4.
x^{2}+5x=-4
Podziel -16 przez 4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
Podziel 5, współczynnik x terminu, 2, aby uzyskać \frac{5}{2}. Następnie Dodaj kwadrat \frac{5}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
Podnieś do kwadratu \frac{5}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
Dodaj -4 do \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
Współczynnik x^{2}+5x+\frac{25}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
Uprość.
x=-1 x=-4
Odejmij \frac{5}{2} od obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}