Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozwiń
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Użyj dwumianu Newtona \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, aby rozwinąć równanie \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Rozwiń \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Podnieś -2 do potęgi 2, aby uzyskać 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Pomnóż 2 przez 4, aby uzyskać 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Połącz 4a^{4} i -8a^{4}, aby uzyskać -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Rozwiń \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Podnieś \frac{1}{2} do potęgi 2, aby uzyskać \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 1 i 2, aby uzyskać 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Użyj dwumianu Newtona \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, aby rozwinąć równanie \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Pomnóż -1 przez \frac{1}{4}, aby uzyskać -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Połącz -4a^{4} i 4a^{4}, aby uzyskać 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Połącz 4a^{2}b i -4a^{2}b, aby uzyskać 0.
2b^{2}-\frac{1}{4}b^{3}
Połącz b^{2} i b^{2}, aby uzyskać 2b^{2}.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Użyj dwumianu Newtona \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, aby rozwinąć równanie \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Rozwiń \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Podnieś -2 do potęgi 2, aby uzyskać 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Pomnóż 2 przez 4, aby uzyskać 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Połącz 4a^{4} i -8a^{4}, aby uzyskać -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Rozwiń \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Podnieś \frac{1}{2} do potęgi 2, aby uzyskać \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 1 i 2, aby uzyskać 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Użyj dwumianu Newtona \left(p-q\right)^{2}=p^{2}-2pq+q^{2}, aby rozwinąć równanie \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Pomnóż -1 przez \frac{1}{4}, aby uzyskać -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Połącz -4a^{4} i 4a^{4}, aby uzyskać 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Połącz 4a^{2}b i -4a^{2}b, aby uzyskać 0.
2b^{2}-\frac{1}{4}b^{3}
Połącz b^{2} i b^{2}, aby uzyskać 2b^{2}.