Oblicz
-\sqrt{3}-4\sqrt{2}\approx -7,388905057
Udostępnij
Skopiowano do schowka
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Użyj dwumianu Newtona \left(a-b\right)^{2}=a^{2}-2ab+b^{2}, aby rozwinąć równanie \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Kwadrat liczby \sqrt{2} to 2.
8-4\sqrt{2}+1+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Pomnóż 4 przez 2, aby uzyskać 8.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\sqrt{12}-3}{\sqrt{3}}
Dodaj 8 i 1, aby uzyskać 9.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{2\sqrt{3}-3}{\sqrt{3}}
Rozłóż 12=2^{2}\times 3 na czynniki. Ponownie wpisz pierwiastek kwadratowy produktu \sqrt{2^{2}\times 3} jako iloczyn kwadratowych korzeni \sqrt{2^{2}}\sqrt{3}. Oblicz pierwiastek kwadratowy wartości 2^{2}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Umożliwia racjonalizację mianownika \frac{2\sqrt{3}-3}{\sqrt{3}} przez mnożenie licznika i mianownika przez \sqrt{3}.
9-4\sqrt{2}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Kwadrat liczby \sqrt{3} to 3.
\frac{3\left(9-4\sqrt{2}\right)}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)+\frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Pomnóż 9-4\sqrt{2} przez \frac{3}{3}.
\frac{3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Ponieważ \frac{3\left(9-4\sqrt{2}\right)}{3} i \frac{\left(2\sqrt{3}-3\right)\sqrt{3}}{3} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{27-12\sqrt{2}+6-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Wykonaj operacje mnożenia w równaniu 3\left(9-4\sqrt{2}\right)+\left(2\sqrt{3}-3\right)\sqrt{3}.
\frac{33-12\sqrt{2}-3\sqrt{3}}{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Wykonaj obliczenia w równaniu 27-12\sqrt{2}+6-3\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}+\left(2\sqrt{3}-1\right)\left(-2\sqrt{3}-1\right)
Podziel każdy czynnik wyrażenia 33-12\sqrt{2}-3\sqrt{3} przez 3, aby uzyskać 11-4\sqrt{2}-\sqrt{3}.
11-4\sqrt{2}-\sqrt{3}-4\left(\sqrt{3}\right)^{2}+1
Użyj właściwości rozdzielności, aby pomnożyć 2\sqrt{3}-1 przez -2\sqrt{3}-1 i połączyć podobne czynniki.
11-4\sqrt{2}-\sqrt{3}-4\times 3+1
Kwadrat liczby \sqrt{3} to 3.
11-4\sqrt{2}-\sqrt{3}-12+1
Pomnóż -4 przez 3, aby uzyskać -12.
11-4\sqrt{2}-\sqrt{3}-11
Dodaj -12 i 1, aby uzyskać -11.
-4\sqrt{2}-\sqrt{3}
Odejmij 11 od 11, aby uzyskać 0.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}