Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

4+4x+x^{2}=4
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(2+x\right)^{2}.
4+4x+x^{2}-4=0
Odejmij 4 od obu stron.
4x+x^{2}=0
Odejmij 4 od 4, aby uzyskać 0.
x\left(4+x\right)=0
Wyłącz przed nawias x.
x=0 x=-4
Aby znaleźć rozwiązania równań, rozwiąż: x=0 i 4+x=0.
4+4x+x^{2}=4
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(2+x\right)^{2}.
4+4x+x^{2}-4=0
Odejmij 4 od obu stron.
4x+x^{2}=0
Odejmij 4 od 4, aby uzyskać 0.
x^{2}+4x=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-4±\sqrt{4^{2}}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 4 do b i 0 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±4}{2}
Oblicz pierwiastek kwadratowy wartości 4^{2}.
x=\frac{0}{2}
Teraz rozwiąż równanie x=\frac{-4±4}{2} dla operatora ± będącego plusem. Dodaj -4 do 4.
x=0
Podziel 0 przez 2.
x=-\frac{8}{2}
Teraz rozwiąż równanie x=\frac{-4±4}{2} dla operatora ± będącego minusem. Odejmij 4 od -4.
x=-4
Podziel -8 przez 2.
x=0 x=-4
Równanie jest teraz rozwiązane.
4+4x+x^{2}=4
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(2+x\right)^{2}.
4+4x+x^{2}-4=0
Odejmij 4 od obu stron.
4x+x^{2}=0
Odejmij 4 od 4, aby uzyskać 0.
x^{2}+4x=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
x^{2}+4x+2^{2}=2^{2}
Podziel 4, współczynnik x terminu, 2, aby uzyskać 2. Następnie Dodaj kwadrat 2 do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}+4x+4=4
Podnieś do kwadratu 2.
\left(x+2\right)^{2}=4
Współczynnik x^{2}+4x+4. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{4}
Oblicz pierwiastek kwadratowy obu stron równania.
x+2=2 x+2=-2
Uprość.
x=0 x=-4
Odejmij 2 od obu stron równania.