Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozwiń
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 5 i 3, aby uzyskać 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 8 przez 2, aby uzyskać 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 5, aby uzyskać 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś -2 do potęgi 3, aby uzyskać -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś -2 do potęgi 16, aby uzyskać 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś -3 do potęgi 2, aby uzyskać 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Pomnóż 9 przez 2, aby uzyskać 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 7, aby uzyskać 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś 2 do potęgi 4, aby uzyskać 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Pomnóż 18 przez 16, aby uzyskać 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 9 i 4, aby uzyskać 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Pomnóż 288 przez -3, aby uzyskać -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 3, aby uzyskać 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Podnieś -2 do potęgi 3, aby uzyskać -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
Skróć wartość 8a^{6} w liczniku i mianowniku.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Każda wartość podzielona przez -1 daje jej przeciwieństwo.
\left(-2a\right)^{3}+\left(\left(-2a\right)^{8}\right)^{2}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 5 i 3, aby uzyskać 8.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{2}\times \left(2a\right)^{4}\left(-3\right)a^{5}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 8 przez 2, aby uzyskać 16.
\left(-2a\right)^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 5, aby uzyskać 7.
\left(-2\right)^{3}a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-2a\right)^{3}.
-8a^{3}+\left(-2a\right)^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś -2 do potęgi 3, aby uzyskać -8.
-8a^{3}+\left(-2\right)^{16}a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-2a\right)^{16}.
-8a^{3}+65536a^{16}-\frac{\left(-3a\right)^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś -2 do potęgi 16, aby uzyskać 65536.
-8a^{3}+65536a^{16}-\frac{\left(-3\right)^{2}a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-3a\right)^{2}.
-8a^{3}+65536a^{16}-\frac{9a^{2}\times 2a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś -3 do potęgi 2, aby uzyskać 9.
-8a^{3}+65536a^{16}-\frac{18a^{2}a^{7}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Pomnóż 9 przez 2, aby uzyskać 18.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times \left(2a\right)^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 7, aby uzyskać 9.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 2^{4}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(2a\right)^{4}.
-8a^{3}+65536a^{16}-\frac{18a^{9}\times 16a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Podnieś 2 do potęgi 4, aby uzyskać 16.
-8a^{3}+65536a^{16}-\frac{288a^{9}a^{4}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Pomnóż 18 przez 16, aby uzyskać 288.
-8a^{3}+65536a^{16}-\frac{288a^{13}\left(-3\right)}{\left(-2a^{2}\right)^{3}}+2a^{4}
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 9 i 4, aby uzyskać 13.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2a^{2}\right)^{3}}+2a^{4}
Pomnóż 288 przez -3, aby uzyskać -864.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}\left(a^{2}\right)^{3}}+2a^{4}
Rozwiń \left(-2a^{2}\right)^{3}.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{\left(-2\right)^{3}a^{6}}+2a^{4}
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 3, aby uzyskać 6.
-8a^{3}+65536a^{16}-\frac{-864a^{13}}{-8a^{6}}+2a^{4}
Podnieś -2 do potęgi 3, aby uzyskać -8.
-8a^{3}+65536a^{16}-\frac{-108a^{7}}{-1}+2a^{4}
Skróć wartość 8a^{6} w liczniku i mianowniku.
-8a^{3}+65536a^{16}-108a^{7}+2a^{4}
Każda wartość podzielona przez -1 daje jej przeciwieństwo.