Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Użyj dwumianu Newtona \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, aby rozwinąć równanie \left(\frac{1}{3}x-\frac{1}{2}\right)^{3}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Rozważ \left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Podnieś do kwadratu \frac{1}{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Rozwiń \left(\frac{1}{3}x\right)^{2}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Podnieś \frac{1}{3} do potęgi 2, aby uzyskać \frac{1}{9}.
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Aby znaleźć wartość przeciwną do \frac{1}{9}x^{2}-\frac{1}{4}, znajdź wartość przeciwną każdego czynnika.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Połącz -\frac{1}{6}x^{2} i -\frac{1}{9}x^{2}, aby uzyskać -\frac{5}{18}x^{2}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
Dodaj -\frac{1}{8} i \frac{1}{4}, aby uzyskać \frac{1}{8}.
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
Użyj właściwości rozdzielności, aby pomnożyć -\frac{1}{9}x^{2} przez \frac{1}{3}x-\frac{5}{2}.
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
Połącz \frac{1}{27}x^{3} i -\frac{1}{27}x^{3}, aby uzyskać 0.
\frac{1}{4}x+\frac{1}{8}=0
Połącz -\frac{5}{18}x^{2} i \frac{5}{18}x^{2}, aby uzyskać 0.
\frac{1}{4}x=-\frac{1}{8}
Odejmij \frac{1}{8} od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
x=-\frac{1}{8}\times 4
Pomnóż obie strony przez 4 (odwrotność \frac{1}{4}).
x=-\frac{1}{2}
Pomnóż -\frac{1}{8} przez 4, aby uzyskać -\frac{1}{2}.