Rozwiąż względem x
x=3
x=4
Wykres
Udostępnij
Skopiowano do schowka
a+b=-7 ab=12
Aby rozwiązać równanie, rozłóż x^{2}-7x+12 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-12 -2,-6 -3,-4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 12.
-1-12=-13 -2-6=-8 -3-4=-7
Oblicz sumę dla każdej pary.
a=-4 b=-3
Rozwiązanie to para, która daje sumę -7.
\left(x-4\right)\left(x-3\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=4 x=3
Aby znaleźć rozwiązania równań, rozwiąż: x-4=0 i x-3=0.
a+b=-7 ab=1\times 12=12
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx+12. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-12 -2,-6 -3,-4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 12.
-1-12=-13 -2-6=-8 -3-4=-7
Oblicz sumę dla każdej pary.
a=-4 b=-3
Rozwiązanie to para, która daje sumę -7.
\left(x^{2}-4x\right)+\left(-3x+12\right)
Przepisz x^{2}-7x+12 jako \left(x^{2}-4x\right)+\left(-3x+12\right).
x\left(x-4\right)-3\left(x-4\right)
x w pierwszej i -3 w drugiej grupie.
\left(x-4\right)\left(x-3\right)
Wyłącz przed nawias wspólny czynnik x-4, używając właściwości rozdzielności.
x=4 x=3
Aby znaleźć rozwiązania równań, rozwiąż: x-4=0 i x-3=0.
x^{2}-7x+12=0
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -7 do b i 12 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
Podnieś do kwadratu -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
Pomnóż -4 przez 12.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
Dodaj 49 do -48.
x=\frac{-\left(-7\right)±1}{2}
Oblicz pierwiastek kwadratowy wartości 1.
x=\frac{7±1}{2}
Liczba przeciwna do -7 to 7.
x=\frac{8}{2}
Teraz rozwiąż równanie x=\frac{7±1}{2} dla operatora ± będącego plusem. Dodaj 7 do 1.
x=4
Podziel 8 przez 2.
x=\frac{6}{2}
Teraz rozwiąż równanie x=\frac{7±1}{2} dla operatora ± będącego minusem. Odejmij 1 od 7.
x=3
Podziel 6 przez 2.
x=4 x=3
Równanie jest teraz rozwiązane.
x^{2}-7x+12=0
Równania kwadratowe takie jak to można rozwiązywać przez dopełnianie do kwadratu. Aby można było dopełnić do kwadratu, równanie musi mieć postać x^{2}+bx=c.
x^{2}-7x+12-12=-12
Odejmij 12 od obu stron równania.
x^{2}-7x=-12
Odjęcie 12 od tej samej wartości pozostawia wartość 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
Podziel -7, współczynnik x terminu, 2, aby uzyskać -\frac{7}{2}. Następnie Dodaj kwadrat -\frac{7}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
Podnieś do kwadratu -\frac{7}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
Dodaj -12 do \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
Współczynnik x^{2}-7x+\frac{49}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
Uprość.
x=4 x=3
Dodaj \frac{7}{2} do obu stron równania.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}