Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-6 ab=1\left(-27\right)=-27
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx-27. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
1,-27 3,-9
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -27.
1-27=-26 3-9=-6
Oblicz sumę dla każdej pary.
a=-9 b=3
Rozwiązanie to para, która daje sumę -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Przepisz x^{2}-6x-27 jako \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
x w pierwszej i 3 w drugiej grupie.
\left(x-9\right)\left(x+3\right)
Wyłącz przed nawias wspólny czynnik x-9, używając właściwości rozdzielności.
x^{2}-6x-27=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Podnieś do kwadratu -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Pomnóż -4 przez -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Dodaj 36 do 108.
x=\frac{-\left(-6\right)±12}{2}
Oblicz pierwiastek kwadratowy wartości 144.
x=\frac{6±12}{2}
Liczba przeciwna do -6 to 6.
x=\frac{18}{2}
Teraz rozwiąż równanie x=\frac{6±12}{2} dla operatora ± będącego plusem. Dodaj 6 do 12.
x=9
Podziel 18 przez 2.
x=-\frac{6}{2}
Teraz rozwiąż równanie x=\frac{6±12}{2} dla operatora ± będącego minusem. Odejmij 12 od 6.
x=-3
Podziel -6 przez 2.
x^{2}-6x-27=\left(x-9\right)\left(x-\left(-3\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 9 za x_{1}, a wartość -3 za x_{2}.
x^{2}-6x-27=\left(x-9\right)\left(x+3\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.