Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{2}-x=2
Odejmij x od obu stron.
x^{2}-x-2=0
Odejmij 2 od obu stron.
a+b=-1 ab=-2
Aby rozwiązać równanie, rozłóż x^{2}-x-2 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-2 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(x-2\right)\left(x+1\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=2 x=-1
Aby znaleźć rozwiązania równań, rozwiąż: x-2=0 i x+1=0.
x^{2}-x=2
Odejmij x od obu stron.
x^{2}-x-2=0
Odejmij 2 od obu stron.
a+b=-1 ab=1\left(-2\right)=-2
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx-2. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-2 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(x^{2}-2x\right)+\left(x-2\right)
Przepisz x^{2}-x-2 jako \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Wyłącz przed nawias x w x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Wyłącz przed nawias wspólny czynnik x-2, używając właściwości rozdzielności.
x=2 x=-1
Aby znaleźć rozwiązania równań, rozwiąż: x-2=0 i x+1=0.
x^{2}-x=2
Odejmij x od obu stron.
x^{2}-x-2=0
Odejmij 2 od obu stron.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, -1 do b i -2 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
Pomnóż -4 przez -2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
Dodaj 1 do 8.
x=\frac{-\left(-1\right)±3}{2}
Oblicz pierwiastek kwadratowy wartości 9.
x=\frac{1±3}{2}
Liczba przeciwna do -1 to 1.
x=\frac{4}{2}
Teraz rozwiąż równanie x=\frac{1±3}{2} dla operatora ± będącego plusem. Dodaj 1 do 3.
x=2
Podziel 4 przez 2.
x=-\frac{2}{2}
Teraz rozwiąż równanie x=\frac{1±3}{2} dla operatora ± będącego minusem. Odejmij 3 od 1.
x=-1
Podziel -2 przez 2.
x=2 x=-1
Równanie jest teraz rozwiązane.
x^{2}-x=2
Odejmij x od obu stron.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Podziel -1, współczynnik x terminu, 2, aby uzyskać -\frac{1}{2}. Następnie Dodaj kwadrat -\frac{1}{2} do obu stron równania. Ten krok powoduje, że lewa strona równania jest doskonałym kwadratem.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Podnieś do kwadratu -\frac{1}{2}, podnosząc do kwadratu licznik i mianownik ułamka.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Dodaj 2 do \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Współczynnik x^{2}-x+\frac{1}{4}. Ogólnie rzecz biorąc, gdy x^{2}+bx+c jest idealny kwadrat, zawsze może być uwzględniany jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Oblicz pierwiastek kwadratowy obu stron równania.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Uprość.
x=2 x=-1
Dodaj \frac{1}{2} do obu stron równania.