Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

x^{2}+2x+1=4
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Odejmij 4 od obu stron.
x^{2}+2x-3=0
Odejmij 4 od 1, aby uzyskać -3.
a+b=2 ab=-3
Aby rozwiązać równanie, rozłóż x^{2}+2x-3 na czynniki przy użyciu formuły x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-1 b=3
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Jedyna taka para to rozwiązanie systemowe.
\left(x-1\right)\left(x+3\right)
Zapisz ponownie wyrażenie rozłożone na czynniki \left(x+a\right)\left(x+b\right), używając uzyskanych wartości.
x=1 x=-3
Aby znaleźć rozwiązania równań, rozwiąż: x-1=0 i x+3=0.
x^{2}+2x+1=4
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Odejmij 4 od obu stron.
x^{2}+2x-3=0
Odejmij 4 od 1, aby uzyskać -3.
a+b=2 ab=1\left(-3\right)=-3
Aby rozwiązać równanie, rozłóż na czynniki lewą stronę przez grupowanie. Najpierw należy zapisać ponownie lewą stronę jako: x^{2}+ax+bx-3. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-1 b=3
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Jedyna taka para to rozwiązanie systemowe.
\left(x^{2}-x\right)+\left(3x-3\right)
Przepisz x^{2}+2x-3 jako \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
x w pierwszej i 3 w drugiej grupie.
\left(x-1\right)\left(x+3\right)
Wyłącz przed nawias wspólny czynnik x-1, używając właściwości rozdzielności.
x=1 x=-3
Aby znaleźć rozwiązania równań, rozwiąż: x-1=0 i x+3=0.
x^{2}+2x+1=4
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x+1\right)^{2}.
x^{2}+2x+1-4=0
Odejmij 4 od obu stron.
x^{2}+2x-3=0
Odejmij 4 od 1, aby uzyskać -3.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 2 do b i -3 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
Podnieś do kwadratu 2.
x=\frac{-2±\sqrt{4+12}}{2}
Pomnóż -4 przez -3.
x=\frac{-2±\sqrt{16}}{2}
Dodaj 4 do 12.
x=\frac{-2±4}{2}
Oblicz pierwiastek kwadratowy wartości 16.
x=\frac{2}{2}
Teraz rozwiąż równanie x=\frac{-2±4}{2} dla operatora ± będącego plusem. Dodaj -2 do 4.
x=1
Podziel 2 przez 2.
x=-\frac{6}{2}
Teraz rozwiąż równanie x=\frac{-2±4}{2} dla operatora ± będącego minusem. Odejmij 4 od -2.
x=-3
Podziel -6 przez 2.
x=1 x=-3
Równanie jest teraz rozwiązane.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Oblicz pierwiastek kwadratowy obu stron równania.
x+1=2 x+1=-2
Uprość.
x=1 x=-3
Odejmij 1 od obu stron równania.