Rozwiąż względem z
z=\frac{4x}{\sqrt{4-x^{2}}+x}
x\neq -\sqrt{2}\text{ and }|x|<2
Rozwiąż względem x
\left\{\begin{matrix}x=-\sqrt{\frac{2}{z^{2}-4z+8}}z\text{, }&z=0\text{ or }z>4\\x=\sqrt{\frac{2}{z^{2}-4z+8}}z\text{, }&z<4\end{matrix}\right,
Udostępnij
Skopiowano do schowka
4\left(\sqrt{\frac{1}{4-x^{2}}}\right)^{2}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(-2\sqrt{\frac{1}{4-x^{2}}}x+2\right)^{2}.
4\times \frac{1}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Podnieś \sqrt{\frac{1}{4-x^{2}}} do potęgi 2, aby uzyskać \frac{1}{4-x^{2}}.
\frac{4}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Pokaż wartość 4\times \frac{1}{4-x^{2}} jako pojedynczy ułamek.
\frac{4x^{2}}{4-x^{2}}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Pokaż wartość \frac{4}{4-x^{2}}x^{2} jako pojedynczy ułamek.
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Rozłóż 4-x^{2} na czynniki.
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Pomnóż 4 przez \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{4x^{2}+4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Ponieważ \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} i \frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{4x^{2}-4x^{2}-8x+8x+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Wykonaj operacje mnożenia w równaniu 4x^{2}+4\left(x-2\right)\left(-x-2\right).
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Połącz podobne czynniki w równaniu 4x^{2}-4x^{2}-8x+8x+16.
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Pomnóż z^{2} przez \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{16+z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Ponieważ \frac{16}{\left(x-2\right)\left(-x-2\right)} i \frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Wykonaj operacje mnożenia w równaniu 16+z^{2}\left(x-2\right)\left(-x-2\right).
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
Połącz podobne czynniki w równaniu 16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(2-z+2\sqrt{\frac{1}{4-x^{2}}}x\right)^{2}
Odejmij 2 od 4, aby uzyskać 2.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\left(\sqrt{\frac{1}{-x^{2}+4}}\right)^{2}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Podnieś do kwadratu 2-z+2\sqrt{\frac{1}{4-x^{2}}}x.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\times \frac{1}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Podnieś \sqrt{\frac{1}{-x^{2}+4}} do potęgi 2, aby uzyskać \frac{1}{-x^{2}+4}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Pokaż wartość 4\times \frac{1}{-x^{2}+4} jako pojedynczy ułamek.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4x^{2}}{-x^{2}+4}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
Pokaż wartość \frac{4}{-x^{2}+4}x^{2} jako pojedynczy ułamek.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4z+4-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
Rozłóż -x^{2}+4 na czynniki.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Pomnóż z^{2}-4z+4 przez \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Ponieważ \frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} i \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Wykonaj operacje mnożenia w równaniu \left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}.
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Połącz podobne czynniki w równaniu 4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Użyj właściwości rozdzielności, aby pomnożyć x-2 przez -x-2 i połączyć podobne czynniki.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Użyj właściwości rozdzielności, aby pomnożyć x-2 przez -x-2 i połączyć podobne czynniki.
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x-\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Odejmij \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} od obu stron.
\frac{4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Ponieważ \frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4} i \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} mają ten sam mianownik, Odejmij je przez odjęcie ich liczników.
\frac{4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Wykonaj operacje mnożenia w równaniu 4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right).
\frac{16z-4zx^{2}}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Połącz podobne czynniki w równaniu 4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z.
\frac{4z\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{16z-4zx^{2}}{-x^{2}+4}.
4z-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
Skróć wartość \left(x-2\right)\left(-x-2\right) w liczniku i mianowniku.
4z-8\sqrt{\frac{1}{4-x^{2}}}x+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x
Dodaj 4\sqrt{\frac{1}{-x^{2}+4}}xz do obu stron.
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x+8\sqrt{\frac{1}{4-x^{2}}}x
Dodaj 8\sqrt{\frac{1}{4-x^{2}}}x do obu stron.
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=16\sqrt{\frac{1}{-x^{2}+4}}x
Połącz 8\sqrt{\frac{1}{-x^{2}+4}}x i 8\sqrt{\frac{1}{4-x^{2}}}x, aby uzyskać 16\sqrt{\frac{1}{-x^{2}+4}}x.
\left(4+4\sqrt{\frac{1}{-x^{2}+4}}x\right)z=16\sqrt{\frac{1}{-x^{2}+4}}x
Połącz wszystkie czynniki zawierające z.
\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z=16\sqrt{\frac{1}{4-x^{2}}}x
Równanie jest w postaci standardowej.
\frac{\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z}{4\sqrt{\frac{1}{4-x^{2}}}x+4}=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
Podziel obie strony przez 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
z=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
Dzielenie przez 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x cofa mnożenie przez 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
z=\frac{4x}{\sqrt{4-x^{2}}+x}
Podziel \frac{16x}{\sqrt{4-x^{2}}} przez 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}