Rozwiąż względem R
\left\{\begin{matrix}R=-\frac{4}{y\cos(\alpha )}\text{, }&y\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}+\frac{\pi }{2}\\R\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\alpha =\pi n_{2}\end{matrix}\right,
Rozwiąż względem y
\left\{\begin{matrix}y=-\frac{4}{R\cos(\alpha )}\text{, }&R\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\alpha =\pi n_{1}+\frac{\pi }{2}\\y\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\alpha =\pi n_{2}\end{matrix}\right,
Wykres
Udostępnij
Skopiowano do schowka
\tan(\alpha )=-\frac{1}{4}Ry\sin(\alpha )
Zredukuj ułamek \frac{3}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
-\frac{1}{4}Ry\sin(\alpha )=\tan(\alpha )
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\left(-\frac{y\sin(\alpha )}{4}\right)R=\tan(\alpha )
Równanie jest w postaci standardowej.
\frac{\left(-\frac{y\sin(\alpha )}{4}\right)R}{-\frac{y\sin(\alpha )}{4}}=\frac{\tan(\alpha )}{-\frac{y\sin(\alpha )}{4}}
Podziel obie strony przez -\frac{1}{4}y\sin(\alpha ).
R=\frac{\tan(\alpha )}{-\frac{y\sin(\alpha )}{4}}
Dzielenie przez -\frac{1}{4}y\sin(\alpha ) cofa mnożenie przez -\frac{1}{4}y\sin(\alpha ).
R=-\frac{4}{y\cos(\alpha )}
Podziel \tan(\alpha ) przez -\frac{1}{4}y\sin(\alpha ).
\tan(\alpha )=-\frac{1}{4}Ry\sin(\alpha )
Zredukuj ułamek \frac{3}{12} do najmniejszych czynników przez odejmowanie i skracanie ułamka 3.
-\frac{1}{4}Ry\sin(\alpha )=\tan(\alpha )
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\left(-\frac{R\sin(\alpha )}{4}\right)y=\tan(\alpha )
Równanie jest w postaci standardowej.
\frac{\left(-\frac{R\sin(\alpha )}{4}\right)y}{-\frac{R\sin(\alpha )}{4}}=\frac{\tan(\alpha )}{-\frac{R\sin(\alpha )}{4}}
Podziel obie strony przez -\frac{1}{4}R\sin(\alpha ).
y=\frac{\tan(\alpha )}{-\frac{R\sin(\alpha )}{4}}
Dzielenie przez -\frac{1}{4}R\sin(\alpha ) cofa mnożenie przez -\frac{1}{4}R\sin(\alpha ).
y=-\frac{4}{R\cos(\alpha )}
Podziel \tan(\alpha ) przez -\frac{1}{4}R\sin(\alpha ).
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}