Przejdź do głównej zawartości
Różniczkuj względem n
Tick mark Image
Oblicz
Tick mark Image

Udostępnij

\frac{\mathrm{d}}{\mathrm{d}n}(\sin(n))=\left(\lim_{h\to 0}\frac{\sin(n+h)-\sin(n)}{h}\right)
Dla funkcji f\left(x\right) pochodna jest granicą funkcji \frac{f\left(x+h\right)-f\left(x\right)}{h}, gdy h dąży do 0, jeśli ta granica istnieje.
\lim_{h\to 0}\frac{\sin(n+h)-\sin(n)}{h}
Użyj formuły sumy dla sinusa.
\lim_{h\to 0}\frac{\sin(n)\left(\cos(h)-1\right)+\cos(n)\sin(h)}{h}
Wyłącz przed nawias \sin(n).
\left(\lim_{h\to 0}\sin(n)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(n)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Przepisz granicę.
\sin(n)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(n)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Skorzystaj z faktu, że n jest wartością stałą przy obliczaniu granic, gdy h dąży do 0.
\sin(n)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(n)
Granicą \lim_{n\to 0}\frac{\sin(n)}{n} jest 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Aby obliczyć granicę \lim_{h\to 0}\frac{\cos(h)-1}{h}, najpierw pomnóż licznik i mianownik przez \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Pomnóż \cos(h)+1 przez \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Użyj tożsamości pitagorejskiej.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Przepisz granicę.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Granicą \lim_{n\to 0}\frac{\sin(n)}{n} jest 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Skorzystaj z faktu, że funkcja \frac{\sin(h)}{\cos(h)+1} jest ciągła przy wartości 0.
\cos(n)
Podstaw wartość 0 w wyrażeniu \sin(n)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(n).