Przejdź do głównej zawartości
Oblicz
Tick mark Image
Różniczkuj względem x
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\int \left(x^{3}-3x^{2}+3x-1\right)\left(x-2\right)\mathrm{d}x
Użyj dwumianu Newtona \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}, aby rozwinąć równanie \left(x-1\right)^{3}.
\int x^{4}-5x^{3}+9x^{2}-7x+2\mathrm{d}x
Użyj właściwości rozdzielności, aby pomnożyć x^{3}-3x^{2}+3x-1 przez x-2 i połączyć podobne czynniki.
\int x^{4}\mathrm{d}x+\int -5x^{3}\mathrm{d}x+\int 9x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 2\mathrm{d}x
Całkuj kres sumy przez sumę.
\int x^{4}\mathrm{d}x-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Wyłącz przed nawias stałą w każdym ze składników.
\frac{x^{5}}{5}-5\int x^{3}\mathrm{d}x+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Ponieważ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, Zamień \int x^{4}\mathrm{d}x na \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+9\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Ponieważ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, Zamień \int x^{3}\mathrm{d}x na \frac{x^{4}}{4}. Pomnóż -5 przez \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-7\int x\mathrm{d}x+\int 2\mathrm{d}x
Ponieważ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, Zamień \int x^{2}\mathrm{d}x na \frac{x^{3}}{3}. Pomnóż 9 przez \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+\int 2\mathrm{d}x
Ponieważ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, Zamień \int x\mathrm{d}x na \frac{x^{2}}{2}. Pomnóż -7 przez \frac{x^{2}}{2}.
\frac{x^{5}}{5}-\frac{5x^{4}}{4}+3x^{3}-\frac{7x^{2}}{2}+2x
Znajdź integralność 2 przy użyciu \int a\mathrm{d}x=ax reguły tabeli znanych całek.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}
Uprość.
-\frac{7x^{2}}{2}+2x+3x^{3}-\frac{5x^{4}}{4}+\frac{x^{5}}{5}+С
Jeśli F\left(x\right) jest funkcją pierwotną f\left(x\right), to zbiór wszystkich funkcji pierwotnych f\left(x\right) jest określony przez F\left(x\right)+C. W związku z tym, dodaj stałą całkowania C\in \mathrm{R} do wyniku.