Przejdź do głównej zawartości
Oblicz
Tick mark Image
Różniczkuj względem x
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Pomnóż -a-1 przez \frac{a+1}{a+1}.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Ponieważ \frac{2a+10}{a+1} i \frac{\left(-a-1\right)\left(a+1\right)}{a+1} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Wykonaj operacje mnożenia w równaniu 2a+10+\left(-a-1\right)\left(a+1\right).
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Połącz podobne czynniki w równaniu 2a+10-a^{2}-a-a-1.
\int \left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Podziel \frac{a^{2}-5a+6}{a^{2}+7a+6} przez \frac{9-a^{2}}{a+1}, mnożąc \frac{a^{2}-5a+6}{a^{2}+7a+6} przez odwrotność \frac{9-a^{2}}{a+1}.
\int \left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\int \left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Skróć wartość \left(a-3\right)\left(a+1\right) w liczniku i mianowniku.
\int \left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Aby dodać lub odjąć wyrażenia, rozwiń je w celu ustawienia takich samych mianowników. Najmniejsza wspólna wielokrotność wartości \left(-a-3\right)\left(a+6\right) i a+3 to \left(a+3\right)\left(a+6\right). Pomnóż \frac{a-2}{\left(-a-3\right)\left(a+6\right)} przez \frac{-1}{-1}. Pomnóż \frac{1}{a+3} przez \frac{a+6}{a+6}.
\int \frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Ponieważ \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} i \frac{a+6}{\left(a+3\right)\left(a+6\right)} mają ten sam mianownik, Dodaj je przez dodanie ich liczników.
\int \frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Wykonaj operacje mnożenia w równaniu -\left(a-2\right)+a+6.
\int \frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Połącz podobne czynniki w równaniu -a+2+a+6.
\int \frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}\mathrm{d}x
Pomnóż \frac{8}{\left(a+3\right)\left(a+6\right)} przez \frac{2a^{2}+5a-3}{2a^{2}}, mnożąc oba liczniki i oba mianowniki.
\int \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Skróć wartość 2 w liczniku i mianowniku.
\int \frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}.
\int \frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}\mathrm{d}x
Skróć wartość a+3 w liczniku i mianowniku.
\int \frac{8a-4}{\left(a+6\right)a^{2}}\mathrm{d}x
Użyj właściwości rozdzielności, aby pomnożyć 4 przez 2a-1.
\int \frac{8a-4}{a^{3}+6a^{2}}\mathrm{d}x
Użyj właściwości rozdzielności, aby pomnożyć a+6 przez a^{2}.
\frac{8a-4}{a^{3}+6a^{2}}x
Znajdź integralność \frac{8a-4}{a^{3}+6a^{2}} przy użyciu \int a\mathrm{d}x=ax reguły tabeli znanych całek.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}
Uprość.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}+С
Jeśli F\left(x\right) jest funkcją pierwotną f\left(x\right), to zbiór wszystkich funkcji pierwotnych f\left(x\right) jest określony przez F\left(x\right)+C. W związku z tym, dodaj stałą całkowania C\in \mathrm{R} do wyniku.