Oblicz
-20x^{4}-96x^{2}-64
Różniczkuj względem x
-80x^{3}-192x
Udostępnij
Skopiowano do schowka
\frac{\mathrm{d}}{\mathrm{d}x}(-4x\left(\left(x^{2}\right)^{2}+8x^{2}+16\right))
Użyj dwumianu Newtona \left(a+b\right)^{2}=a^{2}+2ab+b^{2}, aby rozwinąć równanie \left(x^{2}+4\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x\left(x^{4}+8x^{2}+16\right))
Aby podnieść potęgę do innej potęgi, pomnóż wykładniki. Pomnóż 2 przez 2, aby uzyskać 4.
\frac{\mathrm{d}}{\mathrm{d}x}(-4x^{5}-32x^{3}-64x)
Użyj właściwości rozdzielności, aby pomnożyć -4x przez x^{4}+8x^{2}+16.
5\left(-4\right)x^{5-1}+3\left(-32\right)x^{3-1}-64x^{1-1}
Pochodna wielomianu jest sumą pochodnych jego czynników. Pochodna dowolnego czynnika stałego wynosi 0. Pochodna czynnika ax^{n} wynosi nax^{n-1}.
-20x^{5-1}+3\left(-32\right)x^{3-1}-64x^{1-1}
Pomnóż 5 przez -4.
-20x^{4}+3\left(-32\right)x^{3-1}-64x^{1-1}
Odejmij 1 od 5.
-20x^{4}-96x^{3-1}-64x^{1-1}
Pomnóż 3 przez -32.
-20x^{4}-96x^{2}-64x^{1-1}
Odejmij 1 od 3.
-20x^{4}-96x^{2}-64x^{0}
Odejmij 1 od 1.
-20x^{4}-96x^{2}-64
Dla dowolnego czynnika t oprócz 0 spełnione jest t^{0}=1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}